93
87
Cosmos Format vT1.0 (Draft 1.0) 18/Oct/2006

COSMOS Tagged-Format (CTF) Tool: Formal Definition

Version CTF.1.0

(Draft of 18 October 2006; proposed)

John R. Evans1, Melinda Squibb2, Chris Stephens1, Woody Savage1,
Hamid Hadaddi3, Charles A. Kircher4, and Mahmoud M. Hachem5
1U.S. Geological Survey, Menlo Park, CA

2COSMOS Virtual Data Center, Univ. of CA, Santa Barbara, CA

3 California Geological Survey, Office of Strong Motion Studies, Sacramento, CA

4 Kircher and Associates, Palo Alto, CA

5 Wiss, Janney, Elstner Assoc. Inc., Emeryville, CA

(There are a Table of Contents and an Index of Tags at the end of this document. This is the formal, defining document for this format, and as such is authoritative but difficult reading.)
Introductory Material

OVERVIEW:

The COSMOS v1.20 fixed-field format was an effort to unite in a single forum the various derivatives of the CalTech "Blue Book" formats being used to store and distribute strong-motion data. However, issues of readability, generality, comprehensiveness, and autonomy motivated revisiting the format in some depth and suggesting this tagged format and its xml mirror as additional tools.

Primarily, the COSMOS tagged format tool (CTF) is designed to be readable throughout by both humans and computers, to be expressly international in its viability, to be inherently both "backward compatible" and extensible with little or no effort (thus, easily maintained), to be inherently self documenting and autonomous (that is, not requiring reference to any external information for the meaning of all parts to be clear in coming decades or centuries), and to be easily translated to and from structured formats, including xml and databases. To a lesser degree, this format tool also is designed to minimize redundancy and duplication in each file (to express a given piece of information in one location only, feasible because of its dual human and computer readability).

The tagged format’s applications include providing a generalized storage and translation medium for the COSMOS Virtual Data Center (VDC), a medium that can absorb and translate data from all sources internationally. Thus, the format is intended to be a superset of all formats now used in strong motion work. The tagged format is also available for use by any interested party, along with a series of tools designed to make that use straightforward.

By "backward compatible" we simply mean that parsing (reading) software for CTF Version T.1.1 and beyond will be still be able to read CTF Version CTF.1.0 and so forth without difficulty, and that this ability to read earlier versions will persist as a natural part of the format definition.

To accomplish these goals, we have chosen a simple "tagged" structure (and within this tagged format also a modern "structured" or "class" format, which we hope will be painless to a reader but still readily translated by computers to and from other formats).

We have made every tag name (and its value) explicitly descriptive and have added extensive comments in this “governing” document about each tag’s purpose and rules of use. Indeed, most of these tag names should look familiar to those who know the Blue Book formats, and where not so, we have commented about what Blue Book variables they replace.

This pattern is the essence of dual human- and computer-readability. Everything in this new format is made easy for both to read and understand.

Two departures from the Blue Book formats are, first, that there is no longer a fixed number of real or integer variables, this in order to allow both greater efficiency and extensibility. Second, there are no longer any "coded" entries – no "look aside" tables with their meanings requiring the survival of those tables (and their association with the format) into posterity. Where there are tables of values that can be entered, all the values in those tables are clearly understandable words, phrases, or values whose meaning will be the same in thirty years as it is today without reference to the tables from which they come.

In all instances we have tried to keep the essence of v1.20 alive and well in the CTF tool. Although rearranged and recast into a more parseable form — all of the Blue Book data dictionary is reproduced here in some form. It is straightforward to translate between CTF and any of these formats. The VDC will be providing translation matrices and a Java translation routine, and subroutines for parsing (reading) and for writing CTF; these subroutines can become the front and back ends of existing processing systems if desired. We will provide these front- and back-end routines in at least Fortran, C, MatLab, and Excel, and ask the COSMOS community for consensus on other widely used software. The general translation routine will be in Java™ and driven by Excel™ tables describing the formats, so they are easily extended to additional formats. Similarly, CTF can be used as the core of a “universal translator” connecting any of the formats described in those Excel™ tables. We hope to expand that supported set of formats to include all formats in common use anywhere in the world. This translator and the Web interface to CTF will be key tools for implementing and refining COSMOS VDC functionality.

Lastly, we have also taken the liberty of adding a number of items that seemed to be missing in Version 1.20, such as a various new types of instruments and manufacturers from Japan and Germany, Laplace and z-plane descriptions of instrument and filter responses, and so forth, and to correct a number of trivial typographical errors.

--

This document is the formal definition of the COSMOS Tagged Format Tool, Version CTF.1.0 and is therefore quite long and detailed. A more easily understood executive summary and ready access points to the format are available.

--

A NOTE ON COMMENT USAGE:

There are two kinds of comments in the CTF: (1) Comments associated with a particular group of tags (e.g., Event.Hypocenter.Comments_txt) and (2) comments that can be put almost anywhere but which are given limited treatment by the parser (e.g., "|| This value needs updating.").

Please give preference to the group of tags ending with the word "Comments" for all important comments, particularly those that you wish to associate rigorously with a particular subject matter. Although "||" comments are brought forward by the parser, they are merely lumped into a general category only loosely associated with their original subject. For example, in the xml mirror of the CTF “||” comments are added to the item at which they are given as a “Note” xml type. That is, the parser simply attaches all “||” comments to the last tag above the comment). These “||” comments are primarily for human consumption and not computer manipulation.

Notwithstanding this caveat, "||" comments are used extensively in this document to elucidate details of usage — these comments generally should not be included in any working file.

In practice, "||" comments might be used to provide temporary notes by the user to the user (e.g., "|| still need to fix this") or to make minor comments that do not need to be associated rigorously with any particular tag. However, as a rule, "||" comments should not be used to make comments that are important in any significant way to the data.

Note that this is a change from the similar looking comments of the Blue Book formats. Major or general comments of that sort should be put into the variable ThisFile.Comment.TextValue_txt if not elsewhere associated with specific portions of the header in one of the other Comments variables:
Processing.Comments_txt

Processing.Filter.Comments_txt
Processing.Problem.Comments_txt
Sensor.Comments_txt
Event.Hypocenter.Comments_txt

Event.Magnitude.Comments_txt

Event.MomentTensor.Comments_txt

Event.FocalSolution.Comments_txt

Event.ShakeMap.Comments_txt

--

FORMAL DEFINITION OF THE COSMOS TAGGED FORMAT

1. Exactly one time series or spectrum is allowed per file, except in the case of response spectra, for which multiple damping values may be represented in a single file.

2. In each file:

a. One mandatory header line begins the file, giving the CTF version number,

b. Next follow a variable number of other header lines,

c. Optionally, a URL pointing to an alternate source for this/these data series (and offsets in these files to the start of data, as needs be),

d. Optionally, a data-series checksum, and/or the following three (3) items, e. through g.:

e. A data-initiator line,

f. The time-series or spectral-data, one real or complex value per line; or one time, frequency, or period value and one irregularly sampled real or complex value per line; or one period and the response spectral value(s) for one or more damping values per line;

g. And, finally, a data-terminator line,

3. The header, checksum, URL and offset, data-initiator, data-terminator lines and all other tag-value pairs shall be of the following format:

Formal syntax:

<TagName> XE "TagName" _<VariableType XE "VariableType" > = <value>[<units>];[[<white space>]|| <comments>]

 or

[[<white space>]|| <comments>]

where the tag name is defined by

<TagName> XE "TagName" = <ClassName XE "ClassName" > XE "ClassName" [(m)][.<SubClassName> XE "SubClassName" [(n)][.<SubSubClassName> XE "SubSubClassName" [(o)]...]]

and where "<>" delineates a description and "[]" delineates optional or occasional elements. Note that <TagName> XE "TagName" _<VariableType XE "VariableType" > (and any text values taken from tables) are case sensitive. Similarly, no text value (neither tag names nor text values) may contain any of the following characters: tabs, “, ‘ (double and single quotes), and ` (grave accent). These characters may be misunderstood by XML and databases.
Furthermore, there must be white space on both sides of the equal sign (" = ") and between the value and any units. White space may be blanks or tabs. Note the presence of the semicolon after either the units or a unitless value — the semicolon terminates the “tag = value” sequence.

White space also is allowed almost anywhere else, but not within tag names or within numerical values (of course, you can put white space inside text that you invent yourself, but you may not inject it into text values taken from tables — use those exactly as they appear in the tables).

Numerical values may be represented in integer, floating point, or scientific notation, all in base ten.

The official language of all tags (including of Private tags) and of most values is English. However, we recognize that certain tag values, such as the descriptive name of a geographic location (a Point — Point.Name.Description_txt) and addresses (Point.Name.Address_txt), must be in their local languages to be meaningful. Furthermore, translation of comments and other errata into English should not be allowed to become a barrier to the dissemination of data. (Please note "Question (1) to the COSMOS Community" below.)
The only authoritative definition of the COSMOS format is maintained by the COSMOS Virtual Data Center or its assigns and is made by this one document. This format has many user-extensible lists (tables of values), and these user-contributions are likely to help us expand the authoritative VDC definition of the format. Similarly, use of Private tags, defined below, may also inform VDC modifications.

In most cases, tags can be given in any order, however it is recommended that the order shown here generally be respected so that logically related parameters remain grouped. The Index of Tags near the end of this document is a comprehensive alphabetical list that may aid users. (There are three exceptions to the flexible-order rule, one at the top and two at the bottom of the file. (1) The first tag in Table 3A must appear first in the file, (2) the tags surrounding the DataSeries are in a specific order, and (3) the DataSeries itself, when time or frequency spacing is implicit, must be in increasing order of the abscissa. (The latter applies to most time series, which therefore must be in increasing-time order, as one might expect. Fourier spectra with an implicit frequency axis are to be in increasing-frequency order, also as one might expect. Spectra by period (seconds) nearly always will be irregularly spaced and have an explicit abscissa.)

Also note that the CTF allows subscripted arrays of variables (that is, arrays of tags like-named tags). This facility allows for things like enumerations of filter poles and zeros, several earthquakes appearing a single record (e.g., rapid-fire aftershock or swarm earthquakes), and historical information about an instrument.

These arrays of tags are implemented by the "(m)" part that is shown at the ends of class or subclass names as indicated in this document – that is, not for every tag or portion of a tag but wherever it makes sense to have arrays. Subscripts must be positive integers, 1, 2, 3, …, so are in the MatLab or Fortran style, not the C style of nonnegative subscripting.

For example if one wants to declare several possible versions of an event location it would be Event.Hypocenter(n).… (locations of several events appearing in a single record, on the other hand, would be rendered as Event(m).…). However, it would not make any sense to write Event.Hypocenter.Agency(n)_txt, which would imply one event location with several authors, so the latter is not permitted. In another example, one can document things like multiple instances of Point names. A user might, for example, want to document some Point-naming multiplicity with Point.Name(1).ShortName_txt, Point.Name(2).ShortName_txt, and so forth but by definition the instrument is only at one Point (even if moved around slightly in the past) so Point(n) makes little sense and is disallowed.

(Classes and subclasses end with periods or the underscore, so the "(m)" is just before that character and just after the class name, as in "Sa(2)." or “ResponseSpectrumDamping(3)_dbl”.)

To limit ambiguity, users are urged to keep these subscripts time-, frequency- or period-sequential where those concepts are meaningful. Also, note the prevalence of explicit time stamps in this format which also facilitate documenting historical associations.

We have given explicit subscripting guidance, thus "[(n)]" meaning "optional subscript here" and even more strongly “(m)” meaning “you really need a subscript here”. Subscripts may not appear anywhere else. If a tag allows subscripts but none are given, it defaults to “(1)” — and only the last of these will be saved.

Both the physical grouping of tags and their [Sub]ClassName are attempts to associate variables in a logical manner. For example, variables having to do with the "Data Acquisition Units" (recorders, loggers) are named by the DAU class, while those associated with the geographic locations (“station names”, loosely speaking) are named Point, and those with the source event are Event. The following is a complete list and the definitions of the primary ("top") set of Classes:

Primary Tag Classes and Definitions of Terms

	ClassName XE "ClassName"
	Meaning

	ThisFile
	A small set of special tags which apply to the file per se, such as those naming the version of the format and the VDC’s unique identifier of this record.

	Array
	Any set of Sensors plus DAUs at one or more Points that is managed as or logically forms a single data-acquisition system. For example, a structural array, a geotechnical array, or a single reference instrument at a single Point are all Arrays. (The single-Point Array, the usual case in the free field, is still an Array in the same sense that a scalar is still a vector).†

	Point
	The exact geographic location in three dimensions of the point of measurement (strictly speaking, of the Sensor’s proof mass). Note that this is a very narrow definition and defines the location of a single sensor or package of several axes. Even some classical simple "stations" with sensors spaced a few meters apart might be considered to occupy several distinct Points in cases of precise GPS location and large ground-motion spatial variance.†

	PointRupture
	Tags relating Points to fault-rupture surfaces.

	Event
	The signal of interest (for example, the natural or artificial source of ground motion, a calibration signal, etc.).

	EventPoint
	Tags relating Events to Points.

	DAU
	"Data Acquisition Unit" – the recorder or data logger. Typically a preamplifier, analog-to-digital converter, and some recording and/or telemetry medium, when taken in combination. Formerly, often a film recorder.

	Sensor
	The transducer that converts the Earth signal to an electronic (or sometimes optical) signal. Generally, the accelerometer.

	DataSeries
	The single, delimited, time- or frequency-series (or group of response spectra) referenced by or included in this file — the primary data of this file. Also, any other values closely associated with or generated from these data (for example, the start time of the time series, its RMS or maximum value, its Sa or Housner Intensity, the data format and number of points, and so on).

	RawSeries
	Values closely associated with or generated from the time- or frequency-series from which this processed DataSeries originated.

	Processing
	Parameters describing the processing steps applied to the RawSeries to obtain the DataSeries in this file.

	Private
	Private variables for use only when there is no defined CTF tag that fits the user's requirement. Search the Index of Tags carefully before defining a Private tag.

†The reader may notice that we rarely use the word "station", nearly always using either the word Array or the word Point as they are narrowly defined above. We do so because the word "station" means so many different things to different practitioners, in some cases an entire Array. Similarly, we avoid using the word "site" since this word has special meaning to large portions of the COSMOS community, as in “work site”.

Although it is not a primary Class name, the subclass name Agency appears in many places and may cause some confusion at first. Such tags merely identify the responsible party or “owner” (analogous to a GVDC “Business Associate”). In all cases, we intend that preference be given to identifying Agencies by FDSN network names, some of which are shown in the second column of Table 3E. Additional names that may be used are given in the first column of that Table. If no appropriate Agency name is available from these lists, you may insert some terse, well known, identifiable abbreviation for an organization's name. That is, the Agency list is "extensible" — it is very unlikely that the we have been comprehensive and we do not wish to exclude any Agency from this international format.

We do not mean to limit, in any way, the type of organization or individual that may be named in these variables simply by calling them "Agencies" — the term is nothing more than a reasonably general class name. We fully expect that "Agencies" will include any private individual (such as amateurs of the Public Seismic Network), secondary-school classrooms, Government agencies, consortia, colleges, and universities.

--

EXAMPLES:

To illustrate the format, the following lines represent typical spectral acceleration values at the two periods, 0.3 and 1.0 s, for 5% damping:

DataSeries.Sa(1).Period_dbl = 0.3 s;

|| Period

DataSeries.Sa(1).StructureDamping_dbl = 0.05;
|| Damping fraction

DataSeries.Sa(1).Value_dbl = 32.0 cm/s/s;

|| Sa value

DataSeries.Sa(2).Period_dbl = 1.0 s;

|| Period

DataSeries.Sa(2).StructureDamping_dbl = 0.05;
|| Damping fraction

DataSeries.Sa(2).Value_dbl = 50.0 cm/s/s;

|| Sa value

In practice, the comments would not appear since they would be lumped by the parser into the equivalent of DataSeries.Sa.Note_txt as a single, meaningless jumble. They are included here only for the reader’s benefit.

(The tag name Note_txt is not normally visible to the user. It is used by parsers to store “||” comments in near association with the tags to which the comments. Such comments are all attached to the most recently encountered tag class.)

--

ADDITIONAL MATTERS OF FORMAT:

Blank lines and lines consisting entirely of comments may appear anywhere after the first line, but not between the DataSeries.Itself_txt = “START OF DATA”; and DataSeries.Itself_txt = “END OF DATA”;. Studies have shown that simply inserting blank lines in appropriate locations, such as between major header sections and between logically associated blocks of information, greatly improves the human readability of files. We commend to the reader such uses of white space while making extensive such use of it ourselves.

There is no firm limit on line length since the COSMOS community is no longer bound by the rigors of punched cards. Nevertheless, for the sake of keeping files easy to read on modern workstation screens, users are urged to keep line lengths below 100 characters where feasible. This length easily fits onto screens possessed of moderate resolution at reasonable character size without imposing unreasonable limits on the sizes of tags or their values. (This document is at about 100-character line length, for example.)

The primary exception to this voluntary constraint is for the lengths of tag-valued Comments (the preferred sort of comment), which users may wish to make quite long in some cases. For these cases, a word-based wrap-around display rule in your editor of choice should be sufficient to ensure readability of such simple text as long as users are reasonably careful to write with adequate white space inside the comment text. In particular, please replace line break characters with the six-character sequence “ :\/: ” to ease the reader’s job.

In any case, lines shall not be blank padded on the right. (All lines will be read in as strings by the parsers, so blank padding simply wastes file space.)

We suggest, but do not require, a format such as the following for COSMOS file names:

<Date and time>[_<Network Code>]_<Point Name, possibly full SNCL>[_<Processing instance, stage, volume, etc.>][_Ch<Channel>[In<Index>]][_<Etc.>]_<[A|V|D|…]>.COSM

For example, “20021103_221245_XX_PS09_Op1_Vo2_Ch2_V.COSM” is a record from the Denali fault earthquake of 03 November 2002 (“20021103_221245”) for Alyeska (“_XX” == “other network”) station [Point] “PS09”, evaluated with “processing option” [or instance] one (“_Op1”), fully processed (“Vo2” == Volume 2), for Channel 2 (“_Ch2”), and is a velocity trace (“_V”). The "COSM" (or “cosm”) means "a COSMos format".

The <Date and time> stamp should be to the nearest second, in general, and in the format YYYMMDD_hhmmss, as in “20051117_173802”). Note that this <Date and time> is the time of the first sample, not the origin time of the event nor the trigger time of the DAU. (The event’s origin time is far too likely to change and may be hard to determine when the file is first created. Trigger times are not well related to the DataSeries in any formal way — it varies by usage and circumstance. Consistency is also valuable.)

The <Network Code> is from either Array.Agency_txt or the .NN. field in Point.Name.SNCL_txt or Point.Name.ExpandedSNCL_txt (and is not needed if a full SNCL name is used in the file name). The <Point Name, possibly full SNCL> is whichever of Point.Name.SNCL_txt, Point.Name.ExpandedSNCL_txt, or Point.Name.ShortName_txt is used to identify the location of this Sensor, with the SNCL name preferred if both are given. Obviously, use the Point.Name that is in force at the time of the event as used by the Agency providing this record. The portion “[_Ch<Channel>[In<Index>]]” comes from the tags Sensor.ArrayChannel_int or Sensor.DAUchannel_int (giving preference to the former) and from Point.Name.Index_txt. In any case, the combination “_[<Network Code>]_<Point Name> … [_Ch<Channel>[In<Index>]]” should be as detailed as is required to be unique (both for that particular Array and among all your colleagues internationally) up to and including a full SNCL name or the entire sequence of strings. In all cases, a full SNCL name is preferred in place of “_[<Network Code>] _<Point Name> … [_Ch<Channel>[In<Index>]]”.

The portion "_<[A|V|D|…]>" should always be present and is a string of one to three letters indicating the type of trace, "_A" for acceleration, "_V" for velocity, "_D" for displacement, and so forth as shown in column two of Table 3B.

The optional "[_<Processing instance, stage, volume, etc.>]" identifies the stage of processing, for example "_Vo2" for the equivalent of a Blue Book "Volume 2" record. It should correspond to meaning of one or more of the following five tags from Table 3xxx as shown in this table:

	Tag and Value
	File name Fragment

	Processing.BlueBookVolume_int = [0-3];
	"_Vo[0|1|2|3]"

	Processing.Stage_txt = ["Raw" | "Preliminary" | "Final"];
	"_St[R|P|F]"

	Processing.HumanReview_txt = ["None" | "Reviewed" | "Updated"];
	"_Hn[N|R|M]"

	Processing.Instance_int = <non-negative value>;
	"_Op<Value>"

	Processing.SpecialProcessing_txt = "<Value>";
	"_SP<Value>"

These should be concatenated as needed, as in the example above — “_Op1_Vo2”. Finally, some users may need additional differentiating codes, the “[_<Etc.>]”.

When file names are begun in this manner with a <Date and time>, followed by a string that uniquely identifies the DataSeries, and ended with a string that uniquely identifies the data-processing stage, such file names generally will sort easily into events with the help of typical system file-name-sorting and file-listing algorithms. It will also be clear to colleagues what the name means. Therefore, the portions of the file name after the <Date and time> should as specific as is required for the particular Array, up to and including a full SNCL name or the entire sequence of strings, and including strings identifying the type and data-processing stage of the file. As long as an FDSN network code appears in the name near the front, there will be no naming conflicts with other arrays.

Another example may make this convention clearer for the case of a SNCL name:

20041115_093415_CH4AW.NC.HNZ.01_V2_A.COSM

identifies a "Volume 2" vertical acceleration (“HNZ”) record from a temporary USGS instrument co-located with the CSMIP instrument "Cholame 4AW" near Parkfield while the corresponding CSMIP record might be named

20041115_093414_36412.CE.HNZ.01_V2_A.COSM

in this case using the CSMIP five-digit name for the same site. There can never be confusion of a differing DataSeries because of the different FDSN network name “CE” (echoed within the files by differing responsible-Agency names).

--

REQUIRED AND LESSER VARIABLES:

CTF tags come in four flavors: REQUIRED, CONDITIONALly required, Recommended, and Optional. On rare occasions, you will also encounter Avoid, which are Optional tags that are not recommended for use but are kept for backward compatibility and similar reasons.

All REQUIRED tags must be present in every COSMOS file, even when there is no value corresponding to the tag. REQUIRED tags with no values must be specified as NULL (without quotes for all variable types, including for text strings). Of course, processing software may not be able to function if required tags have NULL values (which are translated into a NaN or an empty string, depending on tag type), so such values partly serve as reminders to the author that they still have values that probably should be filled in before the file is shipped. Nevertheless, if a required tag is simply unavailable, ship the file anyway — users will make due.

Conditionally required (CONDITIONAL) tags are required in certain contexts that are explained in the comments below each tag. For example, when poles and zeros are used, all associated tags are then required, including that the number of poles and zeros become required and each of the poles and zeros themselves is also required.

Recommended tags are those which form a thoroughly documented record but which may not be available for all data, particularly for legacy data, and are not essential to that record’s use.

Optional tags are those which generally should be included if available but are not required.

Whether a tag is REQUIRED, CONDITIONALly required, Recommended, or Optional is indicated by the comment to the immediate right of or below the tag definition. (Remove these annotations from working files, please.)

--

NOTATION:

Use of angle brackets, "<>", is a description of what to substitute while square brackets, "[]", delineate optional or occasional items, as has already been explained.

However, a construct like "[a | b]" means "choose either a or b, but you must choose at least one of them". Folks familiar with Unix manuals will find this pattern familiar, while others may find it curious. The "|" character is the Boolean (logical) "OR" operator in many computer languages, thus the notion of "one OR the other". Since the notation is terse and fairly widely used, we have adopted it here. In places where it is less than obvious in meaning, we try to make that meaning clearer through examples.

--

ORGANIZATION OF THIS DOCUMENT:

This format standard is presented as the primary format statement given above, near the top of this document, and a large set of tables.

Table 1 gives the terse set of allowed variable types and their associated suffixes. (Please also see "ON PRECISION", just below.)

Table 2 lists all recognized physical units.

Tables 3[A-R] are the bulk of the format description are rather lengthy and complex. These Tables describe the numerous tags comprising the "header" as well as a number of lists of text strings that can be entered as the values of certain tags (e.g., accelerometer model names).

Table 4 describes the main DataSeries (time series or spectra) per se though some of the supporting tags in the class DataSeries are in Tables 3[A-R].

--

DATE-AND-TIME FORMAT FOR DateTime TAGS:

Throughout, when a date(time variable is required, we use the "ISO 8601:2000" DateTime standard format, with a few (widely used) exceptions and permitting any degree of truncation for lowered precision. That modified ISO format is

YYYY-MM-DD hh:mm:ss.sss[Z|[+|-]hh[:mm]]

You may use this format to any levels of precision, using any number of fractional digits in “ss.sss” (including none, so “ss”), or leaving out seconds, seconds and minutes, and so forth down to the least precise DateTime, which would contain only “YYYY” (note that this year must always be a four-digit year).

If you do not provide an explicit TimeError for a given DateTime, uncertainty may be implied by the degree of precision given in the DateTime value. For example, DateTimes giving only “YYYY-MM-DD” are assumed to be accurate to one day if not otherwise stated.

The primary distinction from the ISO standard is replacing ISO Standard’s "T" between the date and time with a blank so that it reads "…-DD hh:…" rather than "…-DDThh:…", thus is a little easier on the eye.

(For descriptions of ISO 8601:2000, see "http://www.cl.cam.ac.uk/~mgk25/iso-time.html", or the source, “http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html”.)

Note that the messy bit at the end, "[Z|[+|-]hh[:mm]]" reduces to just "Z" for UTC time ("Zero" or "Zulu" time). The "[+|-]hh[:mm]" part, by contrast, gives a time offset in hours, and possibly minutes, to any local time zone relative to UTC. (A few time zones are 15 or 30 minutes off the hour.) For example, "[Z|[+|-]hh[:mm]]" boils down to "-08" (eight hours behind UTC) for Pacific Standard Time in the USA, and to "+05:30" (five and a half ahead of UTC) for India Standard Time.

Examples: This description was finished at "2006-06-23 00:59:55Z" (rigorous ISO 8601:2000 would render that "2006-06-23T00:59:55Z", which is a bit harder on the eye). If I only admit when this happened to the hour, to the day, to the month, or to the year, it would be "2006-06-23 00Z", "2006-06-23", "2006-06", or "2006".
--

ON PRECISION: THIS IS IMPORTANT!
The COSMOS formats (as well as “Blue Book” derived formats) are entirely text based, and therefore are not referenced to internal computer precision, such as 64-bit IEEE floating point or 32-bit integers. If you are creating your own COSMOS files, it is strongly recommended that you print floating point numbers with a sufficient number of digits to reflect the actual precision of your data, possibly with one or two more digits to limit round-off error (an old technique in the design of computers). If you are reading COSMOS files, be certain to use adequate internal precision in your computer to preserve the values presented in text here (thus, the label "_dbl" suggesting use of "double precision"). Because the COSMOS file is text, the written precision is only and exactly as precise as it is presented by the file’s author, notwithstanding "_dbl" and other notations.

--

NULL VALUES:

The following special values are used both on input and output:

	Representation of NULL value
	Comment
	Most often Translates into

	<some tag>_txt = NULL;
	Null text — NO QUOTES
	Empty string

	<some tag>_int = NULL [units];
	Null integer
	NaN

	<some tag>_dbl = NULL [units];
	Null double precision
	NaN

	<some tag>_cpx = NULL NULL [units];
	Null complex
	NaN NaN

When any CTF file is created that DOES NOT contain all of the REQUIRED tag values, then it is required that the “missing” tags be written for anyway and given the value NULL, as above.

Also, these NULL values are used to fill out the "empty" header supplied at the COSMOS VDC Web site as an educational and quick-use tool. Finally, they may be used as place holders for anticipated data.

On reading, these NULL values will generally cause the parser to return an NaN (“not a number”) or an empty string, but in some cases will return NO value (that is, nothing happens and no variable is returned by the parser).

The one known exception is FORTRAN, where the parser will return a NaN for IEEE floating point will act as in the Table above, but, if not IEEE floating points (or complex), must define some particular value that will be recognized by the calling routine as the null value for all other cases (integers, text, and other-than-IEEE doubles and complex values).

The latter situation will be familiar to users of the Blue Book formats, however the value likely to be declared as the null value will not look so familiar — they will probably be the largest possible positive or negative value for numerical variables and some very long, peculiar string for string variables (the goal being avoidance of conflicts with real data by using obviously-absurd values).

--

QUESTIONS TO THE COSMOS COMMUNITY:

In mentioning the following particular issues we certainly do not intend to limit the discussion of this proposed format to these alone. However, we have encountered a number of points in our deliberations and we do ask for your guidance in these matters.

(1) Regarding the language and character set of the CTF tool, we have chosen English as the official language of tag names and of most text-variable values simply because English is currently the international language of science. However, we fully recognize that there are a number of text values that cannot possibly be rendered properly in English without loosing their meaning. These may well include the geographic location information Point.Name.Description_txt and Point.Name.Address_txt, which will include local place names best spelled out in their proper local language and script.

Which fact brings up a thorny issue. Historically, the character set in which the COSMOS and Blue Book formats are rendered has been ASCII, but ASCII is thoroughly inadequate for rendering the rich diversity of human languages. Accents, vowel marks, umlauts, and cedillas, let alone Japanese, Chinese, Arabic, and a myriad other scripts are required for such a task.

The most promising solution for this issue appears to be Unicode™ (http://www.unicode.org/), a 16- or 31-bit coding that is well on its way to encompassing all known scripts (Unicode™ is a widely used implementation of the international coding standard "ISO/IEC 10646"). Of this large Unicode™ character space, ASCII is the very tiny subset "0000 00XX", where "XX" is an 7-bit value (expressed in hexadecimal). That ASCII subset is sufficient to express all numbers, of course, as well as the line feeds and carriage returns needed to demarcate lines, the white space and other characters required for this format, as well as tag names and most text values. The large set of characters that are missing in fact are those that might go into comments, Point descriptions, and other text-valued variables (excluding those many rendered from the tables herein, which are to be in English). In just two of thousands of examples, the Hebrew Aleph character is “05D0” and Burmese characters are in the range “1000” to “109F”.

It is certain that such needs will arise if CTF is truly to be an international standard format tool for the exchange of strong-motion data — the VDC charter and a primary goal of this document.

Adoption of Unicode™ as the COSMOS encoding standard, then, would seem to be the obvious solution. Indeed, VDC databases are already encoded in Unicode™ for these very reasons. The only problem is that the U.S. and many other predominantly English-speaking countries generally use computer systems that are standardized on ASCII, so that Unicode™ may pose a problem for them when receiving COSMOS tagged format files.

A possible solution, but only if acceptable to the entire international community, would be a translation routine from Unicode™ into ASCII for those of us using only the limited ASCII character set. However, it is not clear either whether such a (phonetic?) translator exists nor whether names thus translated would be acceptable to the authors of the data. We seek the consensus of the international community, most especially with input from non-English-speaking countries which routinely would be creating Unicode™ COSMOS tagged format files that might not be properly handled by such Unicode™-to-ASCII translators.

(2) Should the "variable types" be given explicitly by suffixes, as now shown (Table 1 et seq.), or should variable types be given implicitly by rules of usage? The rules of usage likely would be as follows: A value is text if and only if it is surrounded by double quotes; otherwise, it is integer if and only if it is entirely numeric and contains NO decimal; otherwise, it is double precision if and only if it is entirely numeric and DOES contain a decimal point (and complex if there are two numerical values); otherwise it is an error. ("Numeric" is understood to include "+" and "-" and "." and the ten digits, 0-9 and maybe the letter “e” or “E” to set off a decimal exponent.)

Reasons for keeping variable-type suffixes: Unambiguous format definition that is harder to misinterpret; simplicity in the defining tables; not having to remember the rules — thus, keeping the files self documenting; not having to include decimal points in double precision numbers that lack fractional parts; perhaps making the files a tiny bit easier for computers to parse.

Reasons for using rules: Less visual clutter; files a bit shorter; ….

(3a) We use the word "Agency" in tag names to mean the "the responsible party", any party, whether it be a university, government entity, private corporation, individual (like an advanced amateur), a high school, or any other group or person producing or manipulating the data. Is there a better terse word or phrase? We consciously chose not to use the word "source" any longer because of its inevitable confusion with various aspects of the rupture and hypocenter. The GVDC uses “Business Associate” but this would be very long in our context and is not especially self evident in meaning, not self documenting.

(3b) We use the word "Point" to mean (very narrowly) an exact geographic location in three dimensions, as distinct from the word "Array" which means from one to any number of "Sensors" and “DAUs” grouped in some logical manner. Unfortunately, engineers sometimes use the words "Site" and "Array" more or less interchangeably, with "Site" meaning the general place rather than an exact single place the way a seismologist might, the former sense being, perhaps, as in "work site". We also specifically avoid the word "Station" for similar reasons — too many different meanings for different people, this time primarily among seismologists. So we remain open to suggestions for a good word to mean an exact spot in three dimensions (to a precision of a few centimeters or better) and its related properties. This is a top-end ClassName, in the logical organization of this format tool.

(3c) Note that when we do use the word "Site" it is solely and narrowly in the sense of "site conditions", both of the natural or filled foundation and of any built environment — that is, of anything that affects the motion of the Sensor. Also note that such Site conditions are deemed to apply to a Point, not to an Array, because they are very likely to vary from one Sensor to another. This choice is somewhat at odds with the thinking of many and comments are invited. However, we offer such examples as the San Francisco Bay Bridge and similar large structures, or for that matter, any structure with a reference station and sensors dispersed from basement to roof in full expectation of quite different responses.

(4) What to do about multiple values for one tag: As a mechanism (a) for identifying with a particular Agency the specific names, parameters, data manipulations, etc., that need such associations (and for admitting of more than one such set of values each associated with a different Agency); and, more generally, (b) for providing a means of allowing a multiplicity of certain variables (which arises in many contexts, such as the poles and zeros of a transfer function); we introduce the notion of subscripting or indexing of tags. These subscripts begin at (1) and can be any positive integer. (NB: All tags remain scalars (equivalent to subscript “(1)”) unless a user gives a different, explicit index.)

For example, if you want to declare a history (an array) of Point names and locations, then subscript those values, identify the oldest (the earliest) with array index (1), the next younger with (2), and so forth. This approach prevents subsequent reordering of the file's lines from confusing the meaning. The cost is somewhat more complex tag names.

Note, however, that there is no simple, direct, unique method of saying that a particular value is no longer valid (a disused Point name, for example). The only fully defined time period of validity for data are the three tags ThisFile.MetadataValid.…, which form a set identifying when all the metadata from a particular Agency are valid.

We considered many alternatives before arriving at this solution, and we remain open to your considered suggestions.

(5) In Table 3C(b), we propose a change in the names of the types of calibrations because those defined in COSMOS v1.20 do not seem consistent with electronic capabilities. It also was not clear to us what was intended by "Other calibration", though perhaps there is a need for user definable calibrations.

We suggest the options "Sensor Through Recorder Calibration", "Preamp Through Recorder Calibration", and "Recorder Calibration" because these match where signals generally can be injected and recorded in the field. Please see the comments and Notes associated with Table 3C. (We have replaced the acronym “ADC” by “Recorder” in these phrases to accommodate analog recorders.)

(6) In Table 3E, is "TW" really the correct FDSN network code for the Taiwan Central Weather Bureau? "TW" is listed officially as "Acedemia Sinica, IES, Taipei", the broadband array.

(7) Structural types and geotechnical arrays need to be fleshed out in Table 3H(a-f). In particular, a accepted set of bridge types has not really been established (is DIGGS adopting a standard?). Those bridge types that are published in standards forums are very limited and in our view not sufficiently descriptive. We have instead implemented a description offered by Basöz and Kiremidjian (1995, 1996) that is far more complete but is not yet widely used and is not yet formally adopted as a standard. Nevertheless, its descriptive power is superior and it is at least published by NCEER. Your comments are solicited.

Basöz, N., and A. Kiremidjian, Prioritization of Bridges for Seismic Retrofitting, Technical Report NCEER-95-0007, Multidisciplinary Center for Earthquake Engineering Research, Buffalo, New York, 1995.

Basöz, N., and A. S. Kiremidjian, Prioritization of Bridges for Seismic Retrofitting, Technical Report No. 118, John A. Blume Earthquake Engineering Center, Civil Engineering Department, Stanford University, Stanford, California, 1996.

(8) Would someone be so kind as to supply a list of the most commonly used Japanese and German models of strong-motion instruments in the short-name forms most widely used? We have included the manufacturer names "Akashi", "Lennartz", and "Tokyo Sokushin", while "GeoSIG" was already in the list. Has anyone been left out? Almost certainly so, for which we apologize! We anticipate that these user-extensible lists will become a principal source of a growing standard table for users to draw on, however, it would be best to start with a fairly comprehensive listing.
(9) We could also use a few more examples of DataSeries.AgencysIdentifier_txt (that is, the text string used by an Agency to identify uniquely an event record — a time series or a spectrum; see Table 3L). (DataSeries.AgencysIdentifier_txt is not to be confused with the VDC’s unique identifier for the same record, given in ThisFile.DataSeriesCOSMOSidentifier_txt and assigned by the VDC).

(10) What was the intention of "Integer parameter #39, Shock number in this trigger; normally 1" under "Record parameters:" in COSMOS format v1.20?

(11) Since we have provided the option for passing header information and/or a URL that points to the location of a time series or spectrum on the Web, should the COSMOS community formally endorse the concept (in fact already in use) of a "dataless V0" file for passing header data? That is, should there be an option to pass only the header, and optionally the URL, but no DataSeries? The user would then obtain all the necessary header information from the COSMOS file but, if a URL is present, then go get the (usually somewhat large) time or frequency series over the network directly from the data owner, generally in binary format and therefore without the loss of accuracy that accompanies converting the values into text and then back from text to binary. (Note that because of differences in machine architectures, it is preferable to make all such over-the-Web transfers in “XDR” binary, a well established machine-independent standard that preserves maximum precision.)

As defined below, CTF Version CTF.1.0 currently does permit the definition of a URL that points to a binary or ASCII file on the WEB and currently does also allow this to be the sole source of the DataSeries. Thus, CTF allows transfer of all header information via CTF and all DataSeries information via direct Web fetches from the owner of the data without potential loss of data precision.

Furthermore, CTF also currently allows a header-only, truly dataless, format (“dataless V0”) in which neither the DataSeries nor a URL is given. The purpose of this option is to allow updating header information in the same manner as a “dataless SEED” volume but without having to redistribute a large, unchanged DataSeries. This option will be particularly helpful to any data provider that desires to maintain a copy of the DataSeries at the VDC.

There is, however, a very good argument in favor of supplying not just the URL path to the original DataSeries but in addition a copy of the DataSeries in the COSMOS file itself. Simply put, in addition to being self documenting, a stated goal of CTF is to be self contained and complete. Any requirement for reference to external files or addresses (which have an unfortunate tendency to go missing within an average of less than three years) can render a URL COSMOS file useless. In this view, a COSMOS file should be viable as it stands for the ages with the URL as an alternative channel — more precise but less reliable.

[Koehler (2004) discusses URL viability, finding that various studies report half-lives from 1.4 to 4.6 years (24.5 years in one unusual case). He finds great variation between disciplines and a tendency for a shorter half life in younger URLs and greater stability in older URLs.

Koehler, W. (2004) A longitudinal study of Web pages continued: a report after six years. Information Research, 9(2) paper 174 [Available at http://InformationR.net/ir/9-2/paper174.html]]

(12) The tag Point.Site.GeotechnicalFeature.Identifier_txt anticipates the unique identifiers associated with principal objects available through the Geotechnical Virtual Data Center (GVDC). The related tag, Point.Site.GeotechnicalFeature.Distance_dbl, provides a place to indicate the distance between the Point where this DataSeries was measured and the location of the GVDC object. Such GVDC objects are likely to include boreholes, CPT soundings, surface-wave measurements, refraction-line measurements, trench logs, and so forth.

The GVDC Working Group, in collaboration with several other groups nationally and internationally, is defining a comprehensive geotechnical exchange format and methodology based on XML to which we will provide access from CTF Version CTF.1.0 (and all subsequent revisions) as a means of thoroughly defining site conditions. We doubt that anyone will object to including such a link, but let us know. The form of the link is more at issue, of course. We have consulted directly with Dan Ponti of the DIGGS working group of the GVDC, and would appreciate any feedback from the GVDC Working Group or others with concerns or suggestions about this feature.

(13) There has been some discussion whether the description of a structure on/in which a sensor is located should include the entire structure or only the portion in/on which this particular sensor is to be found. (This issue applies when different portions of the structure differ widely. For example, the eastern versus western San Francisco Bay Bridge, or a building with widely differing heights in different sections of the structure.) Currently, we allow a complete description but require that an index pointing to the particular portion of the structure be provided in the case of complex structures. Your suggestions on this matter would be helpful. (See Table 3H(a-f), subscripting.)
--

--

THE COSMOS TAGGED FORMAT TABLES, VERSION CTF.1.0

Table 1. Variable-Types Suffix List (a new Table)

	Suffix
	Storage Type

	_txt
	Text strings, always enclosed in double quotes (""). Preferably no blank padding (text "justification" is never needed).

	_int
	Integer values (32-bit). Preferably two's complement (thus in the range +2,147,483,647 to —2,147,483,648, that is, +231-1 to —231).

	_dbl
	Double-precision (64-bit) floating point, preferably IEEE.

	_cpx
	If a complex value is required, two _dbl values are given, real then imaginary, separated by white space.

The significance of variable types (other than “_txt” and “_cpx”, which both imply particular formats in the CTF file) is informational, suggestive. The implication is that binary storage to or from which the text representation of a number is translated is suggested (in a few cases expected) to accommodate the equivalent of the stated precision. Users may do as they please, but at their own risk. Parsers provided by the VDC will translate as indicated.

Table 2. Recognized Units (Formerly "Table 2")

SI units, or at least metric, are preferred but not required, recognizing the engineering context of strong motion data.

	Name
	Unit

	Time

	years
	Large time units used mainly to indicate errors

in ISO DateTimes (where not implied by rounding)

	months
	

	days
	

	hours
	

	minutes
	

	s
	seconds (do not use "sec")

	Hz
	Hertz; inverse seconds (do not use "sps")

	ms
	milliseconds

	us
	microseconds

	mHz
	millihertz (0.001 Hz)

	Gravitational acceleration

	g_local
	Local Earth acceleration at the sensor*

	mg_local
	0.001 of local Earth acceleration

	ug_local
	0.000001 of local Earth acceleration

	g_standard
	Standard Earth acceleration (980.665 cm/s/s)

	mg_standard
	0.001 of standard Earth acceleration

	ug_standard
	0.000001 of standard Earth acceleration

	Scaling

	cm/g_local
	cm offset on film record per local g

	cm/g_standard
	cm offset on film record per standard g

	Linear distances and rates

	km
	kilometers

	km/s
	kilometers per second

	m
	meters

	m/s
	meters per second

	m/s/s
	meters per second per second

	cm
	centimeters

	cm/s
	centimeters per second

	cm/s/s
	centimeters per second per second (do not use “gal”)

	ft
	feet (30.48 cm)

	ft/s
	feet per second

	ft/s/s
	feet per second per second

	in
	inches (2.54 cm)

	in/s
	inches per second

	in/s/s
	inches per second per second

	um
	micrometers (do not use “microns”)

	Angles and angular rates

	deg
	degrees (always decimal)

	deg/s
	degrees per second

	deg/s/s
	degrees per second per second

	Scaling/miscellaneous

	count
	digital counts

	
	simple number (unitless)

	%
	percent

	%FS
	percent of full scale (single sided)

	Voltage

	V
	Volts

	mV
	milliVolts

	uV
	microVolts

	V/(<unit>)
	Volts per unit where the parentheses are needed only

when a complex unit is used, e.g., “V/(cm/s/s)”

	mV/(<unit>)
	milliVolts per unit where the parentheses are needed

only when a complex unit is used, e.g., “mV/(cm/s/s)”

	uV/(<unit>)
	microVolts per unit where the parentheses are needed

only when a complex unit is used, e.g., “uV/(cm/s/s)”

	Stress

	MPa
	1,000,000 Pascal

	Pa
	Pascal (Newtons per square meter)

	Baryes
	dynes per square cm

	psi
	pounds per square inch

	Energy

	joules
	SI unit of energy

	ergs
	CGS unit of energy

	Energy/moment

	Nm
	Newton-meters

	dyne-cm
	dyne-centimeters

	Strain

	ustrain
	microstrain

	Log-power/amplitude

	dB
	deciBells

	dB/octave
	deciBells per factor-of-two in frequency

NOTES:

* The Tag Array.EarthGravity_dbl defines the value of local Earth acceleration at the sensor, thus defining the unit "g_local".

To obtain units of spectra, units apropos to time-series amplitudes from the above may be compounded with the phrases "()^2 per Hz", "per root Hz", or "per Hz". For example, "cm/s/s per root Hz" could be used for the square root of a power spectrum (i.e., the RMS spectrum), "(cm/s/s)^2 per Hz", for a power spectrum, and "cm/s/s per Hz" an amplitude spectrum (modulus of a DFT).

--

Table 3. Header Tags.

Table 3A. Certain General and Special Tags

ThisFile.Format_txt XE "ThisFile.Format_txt" = “<[type.]major.minor>”;

|| REQUIRED 1st tag

|| Example:

|| ThisFile.Format_txt = “CTF.1.0”;

|| This value is fixed. This line MUST

|| be the first in the file.
ThisFile.CharacterEncoding_txt XE "ThisFile.CharacterEncoding_txt" = [“US-ASCII” | “UTF-8” | “UTF-16”];

|| REQUIRED

|| Informs users and software which of the these character-

|| encoding standards is used in this file for all _txt values.

||

|| US-ASCII is the old, standard ASCII encoding of the common

|| 127 English and control characters. UTF-8 and -16 are one-

|| and two-byte (or more) encoding of Unicode (ISO-10646).

||

|| Please use US-ASCII when that will suffice and UTF-8 in

|| all other circumstances (it is more compact than UTF-16,

|| particularly in a CTF file where so much may be encoded

|| as single bytes in UTF-8).

||

|| Noting that the official language of this format (for tag

|| names and most values) is English, for which US-ASCII is

|| sufficient, UTF-8 is the most likely to be used for text

|| values of such tags as Point.Name.Description_txt and

|| Point.Name.Address_txt for which another language well

|| may be required for accuracy.

ThisFile.DataSeriesCOSMOSidentifier_txt XE "ThisFile.DataSeriesCOSMOSidentifier_txt" = "<value>";

|| CONDITIONAL

|| REQUIRED if this file is served from the COSMOS VDC;

|| Optional if served directly form data owner (Agency).

||

|| The COSMOS VDC unique identifier assigned by the VDC

|| and associated with this DataSeries.

ThisFile.Preparation.Agency_txt XE "ThisFile.Preparation.Agency_txt" = “<value>“;

|| REQUIRED

|| Whatever individual, group, or Agency that prepared

|| this CTF file; from Table 3E.

ThisFile.Preparation.DateTime_txt XE "ThisFile.Preparation.DateTime_txt" = "YYYY-MM-DD[hh:mm:ss[Z|[+|-]hh[:mm]]]";
|| REQUIRED

|| The date ((time) at which this COSMOS tagged-format (CTF)

|| file is created. It is not the creation DateTime of any source

|| file that may be translated into or subsumed by this CTF

|| file nor of any data copied into this record from other

|| sources (e.g., earthquake-source data).

||

|| Instead, Processing.DateTime_txt identifies the originating-

|| Agency’s authoritative creation DateTime for the DataSeries

|| in this file, while ThisFile.Preparation.DateTime_txt is the

|| DateTime when this COSMOS tagged-format file is created (often

|| by means of translation from the originating-Agency’s format).

||

|| Clearly, therefore, Processing.DateTime_txt must not be later

|| than ThisFile.Preparation.DateTime_txt, but it is possible for

|| these two DateTimes to be the same if the originating-Agency

|| directly creates this tagged-format file.

ThisFile.MetadataValid[(n)].Start.DateTime_txt XE "ThisFile.MetadataValid.Start.DateTime_txt" = "YYYY-MM-DD[hh:mm:ss[Z|[+|-]hh[:mm]]]";

|| Optional

ThisFile.MetadataValid[(n)].Stop.DateTime_txt XE "ThisFile.MetadataValid.Stop.DateTime_txt" = "YYYY-MM-DD[hh:mm:ss[Z|[+|-]hh[:mm]]]";

|| Optional

ThisFile.MetadataValid[(n)].Agency_txt XE "ThisFile.MetadataValid.Agency_txt" = "<from Table 3E>";

|| CONDITIONAL

|| As distinct from ThisFile.Preparation.DateTime_txt,

|| these tags provide an optional means of indicating the

|| date ((time) interval over which one believes that the

|| metadata from the indicated provider (Agency) in this

|| header are valid in their entirety (an interval often

|| called an “epoch”). Users occasionally request this

|| epochal information.

||

|| If either or both the Start.DateTime and the Stop.DateTime

|| is/are given, then the associated Agency is REQUIRED

|| (meaning, of course, that the stated epoch applies only

|| to metadata generated by said Agency).

||

|| The default epoch of metadata validity in this file’s

|| header is from the first to the last sample of this file’s

|| DataSeries, with no other promises made. Similarly, if

|| only one of the DateTime stamps is given, then the other

|| is assumed to be the starting or ending time of this file’s

|| DataSeries, whichever one provides for the metadata to be

|| valid during this DataSeries.

||

|| Most often, zero or one of this sets of tags will be

|| given, and are likely to (but not required to) refer to

|| the same Agency as ThisFile.Preparation.Agency_txt, the

|| author of this file. That is, the author of this file

|| is not likely to make any promises for other suppliers

|| of metadata, such as earthquake hypocenter data.
ThisFile.ValidBand.HighPass.Corner_dbl XE "ThisFile.ValidBand.HighPass.Corner_dbl" = <value> [Hz | s];

|| Optional

ThisFile.ValidBand.LowPass.Corner_dbl XE "ThisFile.ValidBand.LowPass.Corner_dbl" = <value> [Hz | s];

|| Optional

|| In the event that these are preliminary (“quick release”)

|| DataSeries, it is often the case that response spectra and

|| other information are valid only over a limited bandwidth.

|| If this is so, we recommend an explicit statement of the

|| valid frequency or period band via these tags. Obviously,

|| HighPass and LowPass have opposite meanings when expressed

|| in period than when they are expressed in frequency.

||

|| See also, Processing.HumanReview_txt, Processing.Stage_txt,

|| Processing.ConstantsUsed_txt, and Processing.Problem.Status_txt.
ThisFile.NullFloatValue_dbl XE "ThisFile.NullFloatValue_dbl" = <value>;

|| Recommended

ThisFile.NullIntValue_int XE "ThisFile.NullIntValue_int" = <value>;

|| Recommended

|| These values are not used in the CTF per se, but may be

|| provided as suggested NaN and NULL replacement values,

|| NullFloatValue for use only by format parsers/translators

|| that cannot render _dbl and _cpx NaNs into IEEE NaNs.

|| NullIntValue will be rendered in all cases of _int data

|| since there is no equivalent of NaN.

||

|| When such a need arises in a parser and these tags are not

|| provided, the parser shall render all NaN and NULL _dbl,

|| _cpx, and _int values as the largest possible negative value

|| on that computer. If this default behavior is desired (we

|| recommend as much) then <value> should be set to –Inf above.

ThisFile.Comment[(m)].TextValue_txt[(n)] XE "ThisFile.Comment.TextValue_txt" = "<Comments>";

|| Optional

ThisFile.Comment[(m)].Agency_txt[(n)] XE "ThisFile.Comment.Agency_txt" = "<from Table 3E>";

|| CONDITIONAL

|| Provider (Agency) which contributed comment number (n).

|| A matching ThisFile.Comment(n).Agency_txt is REQUIRED for

|| each ThisFile.Comment(n).TextValue_txt. (That is, it is often

|| helpful to identify the source of each Comment.Value when

|| those comments come from multiple sources, and not just

|| from the Agency that created the DataSeries.) If you need

|| more than one line of text put it all into one, long string

|| with “lines” separated by the character pair “\n”.
ThisFile.Citation_txt[(n)] XE " ThisFile.Citation_txt" = “<citation>”;

|| Optional

ThisFile.URL_txt[(n)] XE " ThisFile.URL_txt" = "<Web address>";

|| Optional

|| If there is/are report(s) available for this ThisFile,

|| provide a citation with one or both of these tags.

--

Therefore, typical CTF files will begin with:

ThisFile.Format_txt = “CTF.1.0”;

ThisFile.DataSeriesCOSMOSidentifier_txt = "<value>";

ThisFile.Preparation.Agency_txt = “<value>“;

ThisFile.Preparation.DateTime_txt = "YYYY-MM-DD hh:mm:ssZ";

where the various values are inserted to identify this record and its origins.

Table 3B(a). Type of DataSeries (Formerly "Table 1", cf. "Table 2")

DataSeries.PhysicalParameter_txt XE "DataSeries.PhysicalParameter_txt" = “<value>“;

|| REQUIRED

|| Units are given by DataSeries.Units_txt in Table 4, not here.

|| This tag provides a means of giving a somewhat more detailed text

|| description of the type of data than units alone would provide.

|| DataSeries.PhysicalParameter_txt is in the style of the Blue Book

|| text description of the data.

DataSeries.NonLinearComputation[(m)].Description_txt XE "DataSeries.NonLinearComputation.Description_txt" = “<value>“;

|| CONDITIONAL

DataSeries.NonLinearComputation[(m)].URL_txt XE "DataSeries.NonLinearComputation.URL_txt" = “<Web address>“;

|| CONDITIONAL

|| At least one such tag is REQUIRED if the physical parameter

|| is a nonlinear response spectrum or the result of some other

|| nonlinear computation, in which case the method of computation

|| is to be described here, either by using a well-known name or

|| a citation (Description) or a Web site (URL) containing a

|| similar description of the computation.

Table 3B(b). Codes for Types of DataSeries
	Allowed Values
	*
	Meaning
	Typical Units for DataSeries.Units_txt

	"UnProcessed Acceleration"
	A
	"Volume 1" linear acceleration with baseline NOT processed
	cm/s/s, g_local, count, etc.

	"Processed Acceleration"
	A
	"Volume 2" linear acceleration with baseline fully processed, ready for double integration, possibly filtered too.
	cm/s/s, g_standard, count, etc.

	“Calibration Input Signal”
	CAL
	A signal input to the named instrument to calibrate it (in any appropriate units).
	cm/s/s, cm/s, cm, g_local, count, etc.

	“Acceleration Correction Baseline”
	BL
	† A full time series of the total corrections applied to an unprocessed or partly processed acceleration time series to yield a time series that double integrates successfully to equal the corresponding reported velocity and displacement time series.
	cm/s/s, g_standard, count, etc.

	

	"Velocity"
	V
	Linear velocity
	km/s, m/s, cm/s, in/s

	

	"Absolute Displacement"
	D
	Linear absolute displacement
	m, cm, in

	"Relative Displacement"
	D
	Linear relative displacement
	m, cm, in

	

	"Rotational Acceleration"
	RA
	Angular acceleration
	deg/s/s

	"Rotational Velocity"
	RV
	Angular velocity
	deg/s

	"Rotational Displacement"
	RD
	Angular displacement
	deg

	

	"Absolute Pressure"
	P
	Absolute pressure
	Pa, Baryes, psi

	"Relative Pressure"
	GP
	"Gage pressure", that is, pressure relative to atmospheric
	Pa, Baryes, psi

	

	"Volumetric Strain"
	S
	Volumetric strain
	ustrain

	"Linear Strain"
	S
	Linear strain
	ustrain

	

	"Response Spectra (Sa)"
	Sa
	Acceleration Response Spectra, Sa, Sv, Sd, pseudovelocity ((*Sd = PSV), or pseudoacceleration ((*(*Sd = PSA)
	cm/s/s, etc.

	"Response Spectra (Sv)"
	Sv
	
	cm/s, etc.

	"Response Spectra (Sd)"
	Sd
	
	cm, etc.

	"Response Spectra (PSA)"
	PSA
	
	cm/s/s, etc.

	"Response Spectra (PSV)"
	PSV
	
	cm/s, etc.

	“Geometric Mean PSA”
	gPSA
	Geometric mean of horizontal-component linear PSAs.
	cm/s/s, etc.

	“Median PSA over 90 degrees”
	mPSA
	Median linear PSA for horizontal component rotated through 90 degrees, preferably in one-degree increments.
	cm/s/s, etc.

	

	"Nonlinear Response Spectra (Sa)"
	nSa
	Nonlinear response spectra. Describe method of computation in DataSeries.NonLinearComputation.Description_txt or .URL_txt.
	cm/s/s, etc.

	"Nonlinear Response Spectra (Sv)"
	nSv
	
	cm/s, etc.

	"Nonlinear Response Spectra (Sd)"
	nSd
	
	cm, etc.

	"Nonlinear Response Spectra (PSA)"
	nPSA
	
	cm/s/s, etc.

	"Nonlinear Response Spectra (PSV)"
	nPSV
	
	cm/s, etc.

	“Geometric Mean Nonlinear PSA”
	gnPSA
	Geometric mean of horizontal-component nonlinear PSAs.
	cm/s/s, etc.

	“Median Nonlinear PSA over 90 degrees”
	mnPSA
	Median nonlinear PSA for horizontal component rotated through 90 degrees, preferably in one-degree increments.
	cm/s/s, etc.

	

	"Acceleration Amplitude Spectrum"
	DFT
	Absolute value of DFT
	e.g., cm/s/s per Hz

	“Acceleration Complex Spectrum”
	CFT
	Complex DFT Spectrum
	

	"Acceleration RMS Spectrum"
	RMS
	RMS of noise in acceleration (square root of power spectrum)
	e.g., cm/s/s per root Hz

	"Acceleration Power Spectrum"
	PWR
	Power spectrum of events or noise recorded in acceleration
	e.g., (cm/s/s)^2 per Hz

	<similarly for “Velocity”, etc.>

	

	"____________________"
	"_"
	USER-EXTENSIBLE LIST (use established, terse, clear, English names or phrases)
	<time-series or spectral units>

NOTES:

* Abbreviations recommended for use in COSMOS file names to identify type of trace contained in the file.

† Corrections to preliminary velocity and displacement time series can be and should be translated back to the original acceleration record and this corrected acceleration record ideally should be doubly integrated to produce the processed velocity and displacement DataSeries. Some authors prefer to correct, integrate, correct, and integrate again, however this process does not yield an acceleration trace the integrates correctly to displacement, and the practice is discouraged.
Table 3C(a). Record Types (Formerly "Table 3")

DataSeries.Cause_txt XE "DataSeries.Cause_txt" = "<value>";

|| REQUIRED

|| A value from the upper part of Table 3C(b).

DataSeries.Calibration.InputType_txt XE "DataSeries.Calibration.InputType_txt" = "<value>";

|| CONDITIONAL

|| If DataSeries.Cause_txt is a "… Calibration", then this

|| tag is also REQUIRED and must equal one of the values at

|| the end Table 3C(b).

DataSeries.Calibration.InputAmplitude[(n)]_dbl XE "DataSeries.Calibration.InputAmplitude_dbl" = <value> <units>;

|| CONDITIONAL

|| Recommended for Step, Square Wave, and Random Binary

|| calibrations whenever the value is known. The (n)

|| here and in the two following may be used when the

|| values are varied during the calibration.

DataSeries.Calibration.InputPeriod[(n)]_dbl XE "DataSeries.Calibration.InputPeriod_dbl" = <value> s;

|| Optional

|| Recommended for Square Wave calibrations if known.

|| This is the full period, not the duration of a peak.

DataSeries.Calibration.InputURL_txt XE "DataSeries.Calibration.InputURL_txt" = "<Web address>";

|| Optional

|| Recommended for signals that are too complex to describe

|| well here – Web address(es) of formal description, which

|| may be a time series. Indeed, this URL may point to a

|| “Calibration Input Signal” (CAL) type of CTF file.

Table 3C(b). Record-Type and Input-Type Codes

	Record type
	Meaning

	Use any of the following as values for DataSeries.Cause_txt:

	"Seismic Trigger"
	An Earth signal triggered the recorder

	"Remote Trigger"
	A radio, landline, or other external trigger

	"Preset Trigger"
	A timed, preset trigger

	"Manual Trigger"
	A human finger on a button at the DAU

	"Function Test"
	Some recorder-functionality test

	(Avoid the following four)

	"Sensor Calibration"
	The sensor is being calibrated

	"Amplifier Calibration"
	The amplifier is being calibrated

	"Recorder Calibration"
	The recorder as a whole is being calibrated

	"Other Calibration"
	Some other element of the system is being calibrated?

	(Preferred calibration “event” names)

	"Sensor Through Recorder Calibration"
	A Calibration pulse or sequence is introduced at the sensor and recorded after the ADC (or equivalent location for analog recorders).

	"Preamplifier Through Recorder Calibration"
	A Calibration pulse or sequence is introduced at the first-stage amplifier and recorded after the ADC or equivalent.

	"Filter Through Recorder Calibration"
	A Calibration pulse or sequence is introduced after the amplifiers but before the (anti-alias) filters and recorded after the ADC or equivalent.

	"Recorder Calibration"
	A Calibration pulse or sequence is introduced at the ADC inputs (after the final amplifiers and filters for analog).

	
	

	Use any of the following as values for DataSeries.Calibration.InputType_txt:

	"Step"
	Heavyside function, a step in acceleration.

	"Square Wave"
	Square wave of known period and amplitude.

	"Random Binary"
	Random binary ("telegraph") signal.

	
	

	"____________________"
	USER-EXTENSIBLE LIST (use terse, clear, English descriptions)

NOTE: The lined-out items and their proposed replacements need to be reconsidered with proper consultation by electrical engineers. What is the intended distinction between an "amplifier" and "recorder" calibration here? How does one calibrate the amplifier but not the ADC (analog-to-digital converter)? It can be done by elimination but most systems do not. More discussion is needed and the distinctions need to be drawn here. We offer the subsequent suggestions, which follow the points at which most systems allow signals to be injected and recorded.

--

Table 3D. Geographic and Point Information (Formerly "Tables 4, 5, 6"; new SNCL Tables)

Point.Name[(m)].Agency_txt XE "Point.Name.Agency_txt" = “<value>“;

|| REQUIRED

|| Owner or responsible group (Agency from Table 3E) which

|| assigned the following Point identifier(s) and other data.

|| That is, WHOSE naming and data values are these?

||

|| EXACTLY ONE SUCH TAG IS REQUIRED for every (n) appearing with

|| any of the following "Point.Name..." tags. Since at least one

|| such Point.Name is required, at least one such Agency must be

|| identified.

Point.Name[(m)].DateTime_txt XE "Point.Name.DateTime_txt" = “YYYY-MM-DD[hh:mm:ss [Z|[+|-]hh[:mm]]]“;
|| Recommended

|| This date ((time) is either when this Point.Name was

|| assigned (a “starting date”), or the date these data

|| were obtained from the Agency.

|| +++

|| At least one of Point.Name.SNCL_txt, Point.Name.ExpandedSNCL_txt, or

|| Point.Name.ShortName_txt is REQUIRED. More than one may be given.

|| +++

Point.Name[(m)].SNCL_txt XE "Point.Name.SNCL_txt" = "PPPPP.NN.CCC.LL";

|| CONDITIONAL

|| FDSN SNCL format "Point.Net.Channel.Location"; Point name.

|| (In SNCL terminology, Point would be "Site", hence "SNCL".)

Point.Name[(m)].ExpandedSNCL_txt XE "Point.Name.ExpandedSNCL_txt" = "PPPPPP.NN.CCC.LLLL";

|| CONDITIONAL

|| For use when the user would like to follow the SNCL format

|| but doing so is not practical because they employ longer

|| names than those defined formally by FDSN (for example,

|| six-digit or other long Point names and/or long “Location”

|| fields needed to designate channels within large arrays).

||

|| The field lengths shown are illustrative only – there is

|| no limit on the length of any field, but it is recommended

|| that the “.NN.CCC.” portion be used as defined by FDSN.

|| Such an expansion of the “SNCL” naming convention is the

|| preferred solution for names not strictly fitting the

|| SNCL format because it is self-contained and systematic.

Point.Name[(m)].ShortName_txt XE "Point.Name.ShortName_txt" = "<value>";

|| CONDITIONAL

|| Any other alpha or numeric or mixed name of any length

|| (however, SNCL_txt or ExpandedSNCL_txt are the preferred

|| formats for naming Points).

Point.Name[(m)].Index_txt XE "Point.Name.Index_txt" = "<value>";

|| CONDITIONAL

|| May be REQUIRED in the context of some arrays (if an expanded

|| SNCL format is not used) where a single Point code identifies

|| the entire array while the Index plus-or-minus channel numbers

|| identify particular components within the array.

||

|| Generally used in conjunction with Point.Name.ShortName_txt, but

|| rarely with Point.Name.SNCL_txt or Point.Name.ExpandedSNCL_txt

|| (MUST be with one of the three, in any case). This tag is

|| included here principally for backward compatibility. We

|| strongly recommend that SNCL or expanded SNCL names be used

|| wherever feasible.

Point.Name[(m)].Description[(m)]_txt XE "Point.Name.Description_txt" = "<value>";

|| Optional

|| Longer description of Point location, such as a geographic

|| place name with a terse site description. Takes precedence

|| over Array.Identifier_txt for all stations not associated

|| with an Array but is meant to be used in conjunction with

|| Array.Identifier_txt when there is a local Array (that is,

|| not in the sense of an Agency’s full, spatially expansive

|| array).

||

|| Many institutions subdivide their descriptive names into

|| several parts that are assigned to different variables

|| or cells. For the CTF, please indicate these with

|| the (m) subscript.

Point.Name[(m)].Address(m)_txt XE "Point.Name.Address_txt" = "<Address>";

|| Optional

|| Street Address of the Point or of the structure containing

|| the instrument. Include Point.Name(n).Address(1)_txt =

|| "CONFIDENTIAL" if that is the case, or else simply omit.

|| Separate lines of the Address with the (m) subscript.

--

On Naming:

There are two ways of naming a GEOGRAPHIC THREE-DIMENSIONAL LOCATION; at least ONE of those CONDITIONAL tags must be present. Point.Name.SNCL_txt or, barring that, Point.Name.ExpandedSNCL_txt are the PREFERRED naming formats (users of numeric names please note that "SNCL" names are compatible).

The SNCL name was carefully thought out by FDSN and IRIS and is quite general. Thus, a large proportion of names can be translated into a compatible SNCL name without loss of generality. (Sadly, however, the "PPPPP" portion has missed a number of naming formats which use six or more characters in their primary Point-name code. There are also circumstances in strong-motion work (for example, structural and geotechnical arrays) where one could make very good use of a significantly longer “LL” field to name components within the array. It is for these purposes that we provide Point.Name.ExpandedSNCL_txt.) Nevertheless, numeric names certainly are included in the SNCL format up to five digits (and in Point.Name.ExpandedSNCL_txt up to any length). Unique two-character network names (the "N" of "SNCL") are available through FDSN for use in these names. We also use these FDSN codes extensively elsewhere in the COSMOS format to identify networks — we urge their adoption by all strong-motion networks.

The other method of naming a LOCATION is Point.Name.ShortName_txt, which provides for text, numeric, or mixed strings of any type and size. Point.Name.ExpandedSNCL_txt may be used in a similar way, but where the non-SNCL name is in the SNCL pattern, just with longer fields.

With any of these three primary naming tags (and both may be several if desired), one may also include an indexing tag, Point.Name.Index_txt. However, this “sub-name” tag, which is equivalent to the “.LL” field of a SNCL name and is given primarily for backward compatibility, so we urge that Point.Name.Index_txt not be used. Point.Name.Index_int replaces the "Location Index of sensor site" previously associated with Sensor information, and used to identify sensor elements within arrays, as in structural arrays.

The name tag Point.Name.Description_txt is for an additional narrative description, and may be used optionally. This "Long Description" is the former "Station identification" of COSMOS v1.20 and is meant for a descriptive naming phrase, sometimes the same name that is tersely abbreviated in an alphabetic Point name (SNCL "PPPPP." field). An example of these descriptive names is "CA: Murietta Hot Springs; Skinner Dam, Left Abutment, Control Bldg." for the USGS NSMP station with "PPPPP" code "0720".

Note that because one can use subscripts, there is no need for the various aliases, old, and alternate names that existed in COSMOS v1.20. Simply create more Point.Name(n).ShortName_txt, Point.Name(n).SNCL_txt, Point.Name(n).ExpandedSNCL_txt, or Point.Name(n).Description_txt tags as needs be, remembering that each of these requires a corresponding Point.Name(n).Agency_txt to identify that Point name’s owner or creator. Between them, Point.Name.ShortName_txt, Point.Name.SNCL_txt and Point.Name.ExpandedSNCL_txt replace "Station number", "Station alphanumeric code", and "Secondary station number". Similarly, subscripts and the three tags ThisFile.MetadataValid(n).… offer the necessary mechanism for describing the timing of name changes, any secondary naming, resurveying of a Point, small moves of a Point, and any out-of-date names that may have been used in the past for a given Point.

SNCL NAMING DETAILS:

Point.Name.SNCL_txt names must follow the SNCL protocols and Point.Name.ExpandedSNCL_txt must mimic them closely. If either tag is used, no network code (Array.Agency_txt) need be given because it is in the Point name (".NN.").

SNCL naming conventions are: Any five or fewer alpha and/or numeric characters for the Point name "PPPPP"; an FDSN-assigned two-character "network" code, ".NN"; a SEED-format "channel" code, ".CCC"; and, optionally, a two-character "tie-breaking" "location" code, ".LL", for the case when you have more than one channel with the same "PPPPP.NN.CCC" name (as will often be the case in structural arrays and many geotechnical arrays). An ".LL" might be used, for example, if one specified a structure by "PPPPP.NN.", a location within a structure by ".LL", and the orientation of the component at that location by ".CCC.". (Since many components inside a structure point the same direction, there will routinely be conflicting names without the ".LL" code to distinguish specific locations (and/or channels) within the structural array.) In Point.Name.ExpandedSNCL_txt Point names feel free to lengthen the “PPPPP.” and “.LL” fields.

For the SEED-format channel code, ".CCC", consult Appendix A of the SEED manual, which may be downloaded from http://www.iris.edu/manuals/SEEDManual_V2.4.pdf. Succinctly, the three letters correspond to (1) a frequency band, (2) the type of sensor, and (3) the orientation of the sensor. The most common SEED-format CHANNEL codes for accelerometers sampled at 80 Hz or higher would be "HNZ", "HNN", and "HNE", for cardinally oriented components, or "HNZ", "HN2", and "HN3" for a vertical and two non-cardinal, orthogonal, horizontals, or possibly "HNZ", "HNT", and "HNR" for a beam-forming array or components rotated toward the source azimuth ("R" and "T" meaning "Radial" and "Transverse" in this context). The "N" means "accelerometer" and the "H" means a lower-corner period of 10 s or longer and a sampling rate of 80 Hz or faster.

SNCL names are case sensitive, but there are no rules in the "PPPPP" part about what order or amount of alphas and numerics there may be. In other words, feel free to put into SNCL format your five-digit numeric names and in the ExpandedSNCL name any six-digit or longer numeric names.
If you are using only Point.Name.ShortName_txt, and not Point.Name.ExpandedSNCL_txt or Point.Name.SNCL_txt, then you must then also include an Array.Agency_txt identification tag from Table 3E. In all cases, the FDSN/IRIS/SNCL network name code (the second column in Table 3E) is strongly preferred since it is assigned and recognized through national and international agreements.

--

Table 3E(a). Array Variables, including Network/Owner/Agency Codes (Formerly Tables 4 and 7)

Array.Agency_txt XE "Array.Agency_txt" = “<value>“;

|| CONDITIONAL

|| The Array owner or its operator (Agency from Table 3E)

|| of the recording network. REQUIRED unless using either

|| Point.Name.SNCL_txt or Point.Name.ExpandedSNCL_txt is

|| present.

||

|| This tag, as with other Array tags refers to the Agency

|| (typically an organization but sometimes an individual)

|| operating this geotechnical, structural, or similar Array,

|| not to the owner/operator of a larger network of instruments,

|| though it will usually be the same Agency. (In as much as

|| the NSMP operates a number of structural arrays and processes

|| its own records, this tag, and Point.Name.Agency_txt, and

|| Processing.Agency_txt most often all would be “NP”. In

|| the case of the NGA or PEER data sets a different value

|| attaches to Processing.Agency_txt.)

||

|| (The DateTime associated with this Array ownership is

|| assumed to be the same as Processing.DateTime_txt.)
Array.Identifier_txt XE "Array.Identifier_txt" = “<value>“;

|| Optional

|| If the Array has a name other that that associated with

|| individual components (Points) of the Array, provide it here.

|| Do NOT replicate the value of Point.Name.Description_txt

|| which has precedence.

Array.Owner_txt XE "Array.Owner_txt" = “<value>“;

|| Avoid

|| Table 3E identification of array owner, if different

Array.Operator_txt XE "Array.Operator_txt" = “<value>“;

|| Avoid

|| Table 3E identification of array operator, if different

Array.Affiliate_txt XE "Array.Affiliate_txt" = “<value>“;

|| Avoid

|| Table 3E identification of array affiliate, if any

|| The three tags just above are partially conflicting with Array.Agency_txt
|| and ThisFile.MetadataValid.Agency_txt and are only given to provide backward

|| compatibility; their use is not recommended.

Array.EarthGravity_dbl XE "Array.EarthGravity_dbl" = <value> cm/s/s;

|| CONDITIONAL

|| Local value of Earth acceleration at the array. This value

|| DEFINES the unit "g_local", and therefore is REQUIRED if the

|| units "g_local”, "mg_local", or "ug_local" are used anywhere

|| including if the values of the time series used here were

|| converted from one originally expressed in g_local. In other

|| words, Array.EarthGravity_dbl may be the scaling factor used

|| to convert "Volume 1" units of g_local into absolute units

|| such as cm/s/s when the original is only known in units of

|| local Earth acceleration, and, if so, this conversion factor

|| must be given.

RawSeries.GravityCalibratedAgainst_txt XE "RawSeries.GravityCalibratedAgainst_txt" = ["g_local" | "g_standard"];

|| CONDITIONAL

RawSeries.GtoGalConversionConstant_txt XE "RawSeries.GtoGalConversionConstant_txt" = ["g_local" | "g_standard"];

|| CONDITIONAL

|| Both are REQUIRED whenever the RawSeries was converted from

|| acceleration values expressed in "g_local" or "g_standard"

|| into absolute units such as “cm/s/s”.

||

|| In some (many?) cases, unfortunately, these two values will

|| differ, as when the instrument is calibrated against a local

|| Earth-acceleration value (generally by a flip test at the site)

|| but are converted with the standard value, 980.665 cm/s/s.

|| Although this distinction generally makes only a several part-

|| per-thousand difference and smaller than other uncertainties,

|| it is best to document it.

||

|| RawSeries.GravityCalibratedAgainst_txt indicates whether values

|| of acceleration given in this file as absolute units (e.g.,

|| "cm/s/s") were originally (in the RawSeries) expressed in

|| units of either "g_standard" (980.665 cm/s/s) or "g_local"

|| (defined by Array.EarthGravity_dbl) and converted using the

|| value RawSeries.GtoGalConversionConstant_txt.

||

|| Note that this distinction is implicit in the manner in which

|| the array operator calibrated their instruments and processed

|| their data. In practice, many operators do calibrations by

|| doing a flip test on site at the instrument's location (Point),

|| so that it is calibrated relative to Array.EarthGravity_dbl.

--

Table 3E(b). COSMOS and FDSN Array/Network Codes

	COSMOS Code
	FDSN Code
	Network; Owner

	USCGS
	-
	U.S. Coast and Geodetic Survey

	USGS
	NP
	National Strong Motion Program (NSMP), U.S. Geological Survey

	USBR
	RE
	U.S. Bureau of Reclamation

	ACOE
	-
	U.S. Army Corps of Engineers

	CDMG or CGS
	CE
	Calif. Geological Survey, formerly Div. of Mines and Geology (CGS/California Strong Motion Instrumentation Program (CSMIP))

	CIT
	CI
	Calif. Institute of Technology

	UCB
	BK
	Berkeley Digital Seismic Network (BDSN); UC Berkeley

	CWB
	TW
	Taiwan Central Weather Bureau (CWB)

	
	
	

	-
	AA
	Anchorage Strong Motion Network; Geophysical Institute, Univ. of Alaska, Fairbanks

	-
	AV
	Alaska Volcano Observatory; USGS - Anchorage

	-
	AZ
	ANZA Regional Network; UC San Diego and USGS Menlo Park

	-
	BO
	NIED (Bosai-Ken Network); National Institute of Earth Science and Disaster Prevention

	-
	CN
	Canadian National Seismic Network; Geological Survey of Canada

	-
	NC
	USGS Northern California Regional Network; USGS, Menlo Park

	-
	NN
	Western Great Basin/Eastern Sierra Nevada; Univ. of Nevada, Reno

	-
	SN
	Southern Great Basin Network; Univ. of Nevada, Reno

	-
	US
	U.S. National Seismic Network; ANSS backbone of USGS/NEIC, USGS/ASL and EarthScope Project of IRIS

	-
	UU
	University of Utah Regional Network; University of Utah

	-
	UW
	Pacific Northwest net; University of Washington and USGS

	-
	WY
	Yellowstone Seismic Network; University of Utah (formerly by USGS, Menlo Park)

	
	
	

	-
	**
	All other FDSN/IRIS/SNCL network names are subsumed as acceptable names here.

	-
	USER-EXTENSIBLE LIST (use established, terse, clear, English names or well-known abbreviations)

NOTES:

A complete set of these SNCL network abbreviations can be found at the following URLs.

For permanent networks: http://www.iris.washington.edu/stations/networks.txt
and for portable networks: http://www.iris.edu/stations/networks.portable.txt
Array.Agency_txt is REQUIRED unless the SNCL name Point.Name.SNCL_txt or the SNCL-like

name Point.Name.ExpandedSNCL_txt is used.

--

Regarding the following, Table 3F, we believe that two ways to specify the three-dimensional position and of a Point and the orientation of a Sensor in space are necessary and sufficient:

(1) in absolute terms (that is, relative to established geographic datums and to geographic true North and plumb level (i.e., to the plane normal to the local gravity acceleration vector); or

(2) relative to a location and orientation which itself is known in term of (1).

The latter form of description is typically used in structural arrays and certain other types of compact arrays, such as geotechnical. While it may be the case that the reference point and orientation are not always well known, they should always be given, even if large corresponding error estimates must also be given. It is better to have a general idea where the sensor is than no idea at all (unless no idea at all is what there is, in which case give the value NULL).

Geographic location is addressed in Table 3F. Sensor orientation is addressed in Table 3K(a). There are more- and less-preferred methods for both, the less preferred methods provided for continuity of practice for various organizations.

The first 13 tags of Table 3F are the only place in which the absolute location of the sensor is defined. The first five define the absolute location while the latter eight define the absolute array reference location point and an absolute offset from there to the sensor. Absolute locations are typically used in single-Point "arrays" while relative locations are typically used in structural and other arrays containing Points distributed over some area or volume.

Of the CONDITIONAL tags, one complete set must be selected, either the first three or the latter six.

Accuracy of geographic positions: If care is taken with conversions to text and if IEEE double precision variables are used throughout in processing, then in theory it is possible to store locations accurate to 15.65 digits (52 bits mantissa). (One would write out 16 to 17 digits to maintain this degree of accuracy.) For latitude, this precision equates to about 25 pm (picometers), vastly more than is required. Geographic location precision of 10 cm (differential GPS accuracy) requires at least seven digits after the decimal for latitude.

Table 3F. Other Point and Array Tags — Position

|| Absolute geographic position of sensor (there may be (n) location

|| attempts by one or more Agency, including a history of slight

|| station relocations – a common exigency to accommodate changing

|| field conditions):

||

|| Please note that it is generally desirable to provide exactly one
|| such Point.Location (therefore, no (n)). However, we provide the

|| option of giving a history of Point movements and re-measurements.

||

|| If more than one Point.Location is given, put last (highest

|| index) the authoritative values for this DataSeries and be sure

|| its DateTime is consistent with the DateTime of this record

|| (ThisFile.Preparation.DateTime and ThisFile.MetadataValid…).

|| Absolute geographic position:

Point.Location[(m)].Latitude_dbl XE "Point.Location.Latitude_dbl" = <value> deg;

|| CONDITIONAL

|| Absolute, positive North, decimal degrees

Point.Location[(m)].Longitude_dbl XE "Point.Location.Longitude_dbl" = <value> deg;

|| CONDITIONAL

|| Absolute, positive East, decimal degrees

Point.Location[(m)].Elevation_dbl XE "Point.Location.Elevation_dbl" = <value> <units>;

|| CONDITIONAL

|| Elevation above datum (meters preferred)

Point.Location[(m)].HorizontalDatum_txt XE "Point.Location.HorizontalDatum_txt" = “<value>“;

|| Recommended

|| Table 3G, "Horizontal" or "Mixed" datum

Point.Location[(m)].VerticalDatum_txt XE "Point.Location.VerticalDatum_txt" = “<value>“;

|| Recommended

|| Table 3G, "Vertical" or "Mixed" datum

|| Relative geographic positions consist of a reference point and offsets from there to the sensors:

Array.Location[(m)].Latitude_dbl XE "Array.Location.Latitude_dbl" = <value> deg;

|| CONDITIONAL

|| Absolute of reference, positive North, decimal degrees

Array.Location[(m)].Longitude_dbl XE "Array.Location.Longitude_dbl" = <value> deg;

|| CONDITIONAL

|| Absolute of reference, positive East, decimal degrees

Array.Location[(m)].Elevation_dbl XE "Array.Location.Elevation_dbl" = <value> <units>;

|| CONDITIONAL

|| Elevation above datum (meters preferred)

Array.Location[(m)].HorizontalDatum_txt XE "Array.Location.HorizontalDatum_txt" = “<value>“;

|| Recommended

|| Table 3G, "Horizontal" or "Mixed" datum

Array.Location[(m)].VerticalDatum_txt XE "Array.Location.VerticalDatum_txt" = “<value>“;

|| Recommended

|| Table 3G, "Vertical" or "Mixed" datum

Point.Location[(m)].NorthOffset_dbl XE "Point.Location.NorthOffset_dbl" = <value> <units>;

|| CONDITIONAL

Point.Location[(m)].EastOffset_dbl XE "Point.Location.EastOffset_dbl" = <value> <units>;

|| CONDITIONAL

Point.Location[(m)].ElevationOffset_dbl XE "Point.Location.ElevationOffset_dbl" = <value> <units>;

|| CONDITIONAL

|| North-, East-, and upward-positive offsets from the Array.Location…

|| reference location, for use in array-element positioning. (Meters

|| preferred for all these units.)

|| For all Points:
Point.Location[(m)].Agency_txt XE "Point.Location.Agency_txt" = “<value>“;

|| REQUIRED

|| Attribution for the above Point location (relative or

|| absolute). Owner (Agency from Table 3E) of this set

|| of Point coordinates.

Point.Location[(m)].DateTime_txt XE "Point.Location.DateTime_txt" = “YYYY-MM-DD[hh:mm:ss [Z|[+|-]hh[:mm]]]“;

|| Either the date ((time) that this Location was determined
|| Optional

|| or the date ((time) these data were obtained from the Agency.

|| If not given, assumed to be Processing.DateTime_txt, the

|| authoritative creation date of this DataSeries.

Array.Location[(m)].Agency_txt XE "Array.Location.Agency_txt" = “<value>“;

|| CONDITIONAL

|| Attribution for the above Array (reference) location.

|| Owner/provider of this set of coordinates (Agency from

|| Table 3E). Often the same as Point.Location.Agency_txt,

|| but REQUIRED if and Array.Location is given.
Array.Location[(m)].DateTime_txt XE "Array.Location.DateTime_txt" = “YYYY-MM-DD hh:mm:ss[Z|[+|-]hh[:mm]]“;

|| Either the DateTime that this Location was determined

|| Optional

|| or the DateTime these data were obtained from the Agency.

|| If not given, assumed to be Processing.DateTime_txt, the

|| authoritative creation date of this DataSeries.

Array.TotalRecorders_int XE "Array.TotalRecorders_int" = <value>;

|| Recommended

|| Number of recorders in the recording system at this array.

Array.TotalChannels_int XE "Array.TotalChannels_int" = <value>;

|| Recommended

|| Total number of channels in the recording system at this array.

|| (cf. DAU.TotalChannels_int – there may be several DAUs in the

|| array — and Sensor.ArrayChannel_int and Sensor.DAUchannel_int,

|| which identify the particular channel in the Array or DAU.

--

Table 3G. Geodetic Elevation Datums (formerly Table 5)

	Type of Datum
	Name of Datum

	Horizontal
	"NAD83"

	
	"NAD27"

	
	

	Mixed
	"WGS72"

	
	"WGS84"

	
	"ITRF00"

	
	

	Vertical
	"GEOID99"

	
	"NAVD88"

	
	"NGVD29"

	
	

	USER-EXTENSIBLE LIST (use established, terse, clear, English names)
	"_______"

Table 3H(a). Site Type and the Built Environment (formerly Table 6)

|| ---

|| Geologic, geophysical, and geotechnical considerations:

|| ---

|| There may be more than one determination, (n), of the following values.

|| Further, the sense of “Recommended” here is “strongly” for at least some

|| subset of these site-condition characterizations.

Point.Site.Vs[(m)].IntervalSvelocity_dbl XE "Point.Site.Vs.IntervalSvelocity_dbl" = <value> <velocity units>;

|| CONDITIONAL

Point.Site.Vs[(m)].FromDepth_dbl XE "Point.Site.Vs.FromDepth_dbl" = <value> <distance units>;

|| CONDITIONAL

Point.Site.Vs[(m)].ToDepth_dbl XE "Point.Site.Vs.ToDepth_dbl" = <value> <distance units>;

|| CONDITIONAL

Point.Site.Vs[(m)].Agency_txt XE "Point.Site.Vs.Agency_txt" = “<from Table 3E>";

|| Recommended

Point.Site.Vs[(m)].DateTime_txt XE "Point.Site.Vs.DateTime_txt" = “YYYY-MM-DD[hh:mm:ss.[Z|[+|-]hh[:mm]]]“;
|| Recommended

Point.Site.Vs.Subscript_int XE "Point.Site.Vs.Index_int " = <points to preferred (m)>;

|| CONDITIONAL

|| The first three tags are all REQUIRED when any of them

|| is given. The index presumes there may be several

|| measurements at a site, generally by differing method.

||

|| IntervalSvelocity is the average Vs (m/s preferred) over

|| some depth interval indicated by FromDepth and ToDepth,

|| respectively the shallower and greater depth (preferably

|| in m). These values were supplied by the stated Agency

|| (or created) at the stated date ((time).

||

|| Examples:

|| (1) Vs30 would be represented by …FromDepth_dbl = 0 m;

|| and …ToDepth_dbl = 30 m; with the Vs30 interval velocity

|| given in …IntervalSvelocity_dbl, generally in m/s.

|| (2) Z1500 would be represented by …FromDepth_dbl = 0 m; and

|| …ToDepth_dbl = 1500 m; and the …IntervalSvelocity_dbl.

||

|| Use of Agency and date ((time) are recommended for

|| telling the source of the information and either when

|| it was created (measured, estimated, …) or when it was

|| supplied for use in this file.

||

|| If multiple values (m) are given above, then

|| Point.Site.Subscript_int is REQUIRED and points to

|| the values considered “preferred” for this Sensor.

Point.Site.Code.Subscript_int XE "Point.Site.Code.Index_int " = <points to preferred (m)>;

|| CONDITIONAL

|| If more site codes than one, indicates which

|| one is “preferred”. REQUIRED if more than

|| one index is given but may be NULL to indicate

|| no preference.

Point.Site.Code[(m)].Agency_txt XE "Point.Site.Code.Agency_txt" = "<from Table 3E>";

|| Recommended

|| The organization or individual (Agency) that provides

|| this Site.Code.

Point.Site.Code[(m)].DateTime_txt XE "Point.Site.Code.DateTime_txt" = “YYYY-MM-DD hh:mm:ss[Z|[+|-]hh[:mm]]“;

|| Either the DateTime that this Site.Code was first used

|| Optional

|| or the DateTime the code was obtained from the operator

|| (Agency, preferably from Table 3E).

Point.Site.Code[(m)].Citation_txt XE "Point.Site.Code.Citation_txt" = "<description of codes>";

|| Recommended

Point.Site.Code[(m)].URL_txt XE "Point.Site.Code.URL_txt" = "<Web address>";

|| Recommended

|| If possible, cite a description the type of the

|| Site.Code used here.

Point.Site.Code[(m)].TextValue_txt XE "Point.Site.Code.TextValue_txt" = "<the site code itself>";

|| Recommended

|| Any site-condition code developed by any organization.

|| The values for Agency may be those of Table 3E or any

|| other “owner” of these code definitions.

||

|| For example, for NEHRP Vs30 site codes:

	NEHRP Code
	VS30 Range (m/s)

	A
	> 1500

	B
	760 to 1500

	C
	360 to 760

	D
	180 to 360

	E
	< 180

|| the values would be

|| Point.Site.Code(n).Agency_txt = "CE";

|| Point.Site.Code(n).DateTime_txt = "2006-08-16";

|| Point.Site.Code(n).Citation_txt = "NEHRP";

|| Point.Site.Code(n).TextValue_txt = ["A" | "B" | "C" | "D" | "E"];

|| The Agency and DateTime are Recommended whenever

|| a Value is given.
Point.Site.Geology[(m)]_txt XE "Point.Site.Geology_txt" = “<value>“;

|| Recommended

|| Surface-unit geologic name (e.g., "Qal"). While

|| this is an important value, we note that it is

|| widely believed to be an insufficient replacement

|| for a Point.Site.Code.

||

|| If the Earth structure beneath the station is

|| known or inferred, the user may list a layered

|| medium by using (m), with (1) always being the

|| surface layer.

Point.Site.Citation_txt XE "Point.Site.Citation_txt" = "<Citation>";

|| Optional

Point.Site.URL_txt XE "Point.Site.URL_txt" = "<Web address>";

|| Optional

|| A citation or pointer to a provider's detailed site

|| description (geology, geophysics, geotechnical,

|| structures, and any other site information

|| affecting response).

Point.Site.GeotechnicalFeature[(m)].Identifier_txt XE "Point.Site.GeotechnicalFeature.Identifier_txt" = "<value>";

|| Optional

Point.Site.GeotechnicalFeature[(m)].URL_txt XE "Point.Site.GeotechnicalFeature.URL_txt" = "<Web address>";

|| Optional

Point.Site.GeotechnicalFeature[(m)].Distance_dbl XE "Point.Site.GeotechnicalFeature.Distance_dbl" = <value> <units>;

|| Optional

Point.Site.GeotechnicalFeature[(m)].Type_txt XE "Point.Site.GeotechnicalFeature.Type_txt" = “<value>”;

|| Optional

Point.Site.GeotechnicalFeature[(m)].Distributor_txt XE "Point.Site.GeotechnicalFeature.Distributor_txt" = [“GVDC” | "<other value>”];

|| Optional

Point.Site.GeotechnicalFeature[(m)].Agency_txt XE "Point.Site.GeotechnicalFeature.Agency_txt" = “<value>”;

|| Optional

|| The COSMOS Geotechnical Virtual Data Center (GVDC) will soon

|| become a leading means of reaching large stores of detailed

|| geotechnical data. The tags here anticipate the “unique

|| Identifier” of features in that virtual data base.

||

|| Additionally, these tags are general enough to reference

|| geotechnical data from essentially any source, either via

|| the Identifier or a URL, and from an original source Agency

|| often via a Distributor such as the GVDC.

||

|| These features are likely to include boreholes, CPT soundings,

|| trench logs, SASW and similar seismic profiles, and so forth.

||

|| Distance provides the distance from the Site of this DataSeries

|| measurement to the location of the geotechnical feature. Similarly,

|| Type names the type of feature, preferably using the names of GVDC’s

|| xml structures identifying the feature (e.g., “hole” for boreholes).

|| --

|| The built environment versus reference and free field:

|| --

|| One set of the following CONDITIONAL tags is REQUIRED to properly

|| describe the siting conditions of this individual Sensor at this

|| specific Point.

||

|| We note that it might be thought that these should be Array
|| tags, however different Points within an array of instruments

|| can be structural, reference or free-field, and in different

|| settings within a structure (abutment, mid-span, etc.). For

|| example, consider the San Francisco Bay Bridge, which has

|| abutments on hard rock and floating in deep Bay mud, has

|| reference sites in boreholes and on the surface in both

|| environments, and has sensors in numerous settings along

|| the 10-km-long structure, on steel and concrete, old and

|| new.

||

|| Therefore the description must be specific to each Point

|| within the array, specific to the single record represented

|| in this file. While current tags do not capture the full

|| complexity of possible descriptions, the way is opened for

|| complete descriptions, and the process at least brought to

|| the point where distinctions between reference sites and

|| those on the structure can be made.

||

|| Note that tags are grouped and a logical set of related

|| tags is required to complete this section. If the Point

|| is in reference of free-field conditions, then only the

|| first tag is needed. If it is a built setting, one of the

|| structure sets of tags is required.

||

|| Note that where an index (m) appears below, it is being used in

|| most cases to indicate that some structure varies significantly

|| from one location to another. In this case, it is preferable

|| also to include the corresponding LocationIndex_int tag to tell

|| the user which description applies best to this specific

|| Point.Location.

|| Descriptors that can apply to any kind of structure:

Point.StructureInfluence_txt XE "Point.StructureInfluence_txt" = [“Free field” | “Reference” | “In structure”];

|| Select which of the three best describes the

|| REQUIRED

|| degree to which the built-environment (structures)

|| impact the response of this Sensor — not at all,

|| some, or significantly. We urge the adoption of

|| COSMOS/ANSS standards in this distinction.

|| Between Point.DeploymentDescription_txt, Point.OtherStructure.Description_txt,

|| Point.Building.…, Point.Bridge.…, and Point.Dam.… at least a basic description

|| of Sensor siting conditions is REQUIRED (a sufficient set of those marked

|| CONDITIONAL).

Point.DeploymentDescription[(m)]_txt XE "Point.DeploymentDescription_txt" = "<Terse Description>";

|| CONDITIONAL

|| One or more text description(s) from Table 3H(b)

|| which describe the installation details of either

|| a free-field or a reference Sensor.

||

|| This tag is used only for non-structural installations.

|| For sensors in/on structures, use a set of the tags

|| here below.

||

|| It is assumed that all (m) pertain equally.

Point.StructurePedigree.DateApplied.DateTime_txt XE "Point.StructurePedigree.DateTime_txt" = “YYYY-MM-DD[…]“;

|| Optional

Point.StructurePedigree.DateApplied.TimeError_dbl XE "Point.StructurePedigree.TimeError_dbl" = <value> [years | months | …];

|| Optional
Point.StructurePedigree.DesignCodeUsed_txt XE "Point.StructurePedigree.DesignCodeUsed_txt" = “<Building Code(s) Applied>”;
|| Optional

|| Estimated or actual date of design and/or construction,

|| generally to the nearest year only and specifying the

|| year controlling structural qualities (inception date,

|| completion date, or some other year), and the uncertainty

|| in this design-controlling DateTime. Also, the building

|| code or codes under which this structure was designed

|| and built. For example, “2006 IBC”.

Point.OtherStructure[(m)].Description_txt XE "Point.OtherStructure.Description_txt" = "<Terse Description>";

|| CONDITIONAL

|| Brief description of an instrumented structure

|| not elsewhere described or describable. If you

|| need more than one line of text, use subscripts

|| (m) or put it all into one, long string with

|| “lines” separated by the character pair “\n”.
Point.OtherStructure[(m)].HAZUSoccupancyClass_txt XE "Point.OtherStructure.HAZUSoccupancyClass_txt" = “<From Table 3H(f)>”;
|| Optional

|| A HAZUS code indicating the occupancy pattern of the

|| structure. May be given in place of or in addition

|| to other descriptors.
Point.OtherStructure.Subscript_int XE "Point.OtherStructure.Index_int" = <value of (m) where this sensor is>;
|| CONDITIONAL

|| If there are more than one (m), this tag is REQUIRED

|| and points to the Description and/or HAZUSoccupancyClass

|| pertaining specifically to this Sensor.

|| Descriptors that apply only to buildings:

Point.Building[(m)].StructuralSystem[(n)]_txt XE "Point.Building.StructuralSystem_txt" = "<Terse Description>";

|| CONDITIONAL

|| Recommended when the Point is in/on a building.

|| Use one or more descriptions from Table 3H(c).

|| (If a code from Table 3H(e,f) is desired, use

|| Point.Building.HAZUSoccupancyClass_txt and/or

|| Point.Building.HAZUSbuildingType_txt instead.)

||

|| Use tags enumerated elsewhere when the structure

|| is not a building (Bridge, Dam, OtherStructure).

||

|| It is assumed that all (n) pertain equally.

Point.Building[(m)].HAZUSbuildingType_txt XE "Point.Building.HAZUSbuildingType_txt" = “<From Table 3H(e)>”;

|| Optional
Point.Building[(m)].HAZUSoccupancyClass_txt XE "Point.Building.HAZUSoccupancyClass_txt" = “<From Table 3H(f)>”;

|| Optional

|| Two HAZUS codes indicating the type of building,

|| and its occupancy pattern. May be given in place

|| of or in addition to other descriptors.
Point.Building[(m)].NumberOfStories.AboveGrade_int XE "Point.Building.NumberOfStories.AboveGrade_int" = <value>;

|| CONDITIONAL

Point.Building[(m)].NumberOfStories.BelowGrade_int XE "Point.Building.NumberOfStories.BelowGrade_int" = <value>;

|| CONDITIONAL

|| Recommended if the structure is a building.

|| Pairs with Point.Building.StructuralSystem(m)_txt

|| to form a complete description. Can be an array

|| if the building is complex, with sections of

|| differing height or structural type.

||

|| One might wish to indicate multiple values with

|| Point.Building.NumberOfStories.AboveGrade(n)_int

|| or Point.Building.NumberOfStories.BelowGrade(n)_int

|| when the structure is complex enough for several

|| sections of differing height to contribute

|| significantly to the vibrational modes of the

|| structure.

Point.Building[(m)].Height_txt XE "Point.Building.Height_txt" = "[Low | Medium | High] Rise";

|| CONDITIONAL

|| Recommended if the structure is a building and the

|| number of stories is not known precisely. Pairs

|| with Point.Building.StructuralSystem(n)_txt to

|| form a complete description.

||

|| Exactly one Point.Building.NumberOfStories.… or

|| Point.Building.Height_txt is REQUIRED if the Point

|| is in/on a building.

Point.Building.Subscript_int XE "Point.Building.Index_int" = <value of (m) where this sensor is>;

|| CONDITIONAL

|| If there are more than one (m), this tag is REQUIRED

|| and points to the Point.Building[(m)]… pertaining

|| specifically to this Sensor.

|| Descriptors that apply only to bridges:

Point.Bridge.Subscript_int XE "Point.Bridge.Index_int" = <value of (m) where this sensor is>;

|| CONDITIONAL

|| If there are more than one (m) in what follows

|| this tag is REQUIRED and points to the

|| Point.Bridge[(m)]… pertaining specifically to

|| this Sensor.

Point.Bridge[(m)].Description_txt XE "Point.Bridge.Description_txt" = "<from Table 3H(d)>";

|| CONDITIONAL

|| General description of a bridge. If the details

|| listed below for the next six tags are not available,

|| you may use Point.Bridge.Description(m)_txt with one

|| value from Table 3H(d) per subscript (please do not

|| use values from that Table intended for the Basöz

|| and Kiremidjian (1995, 1996) tags below.
Point.Bridge[(m)].HAZUSoccupancyClass_txt XE "Point.Bridge.HAZUSoccupancyClass_txt" = “<From Table 3H(f)>”;

|| Optional

|| A HAZUS code indicating the occupancy pattern of this

|| bridge. We note that HAZUS does not currently list such

|| descriptors for traffic arteries so this is a placeholder

|| at present. May be given in place of or in addition to

|| other descriptors.
Point.Bridge[(m)].SubstructureMaterial_txt XE "Point.Bridge.SubstructureMaterial_txt" = "<value>";

|| CONDITIONAL

Point.Bridge[(m)].SuperstructureConfiguration_txt XE "Point.Bridge.SuperstructureConfiguration_txt" = "<value>";

|| CONDITIONAL

Point.Bridge[(m)].NumberOfSpans_txt XE "Point.Bridge.NumberOfSpans_txt" = "<value>";

|| CONDITIONAL

Point.Bridge[(m)].AbutmentType_txt XE "Point.Bridge.AbutmentType_txt" = "<value>";

|| CONDITIONAL

Point.Bridge[(m)].SpanContinuity_txt XE "Point.Bridge.SpanContinuity_txt" = "<value>";

|| CONDITIONAL

Point.Bridge[(m)].ColumnsPerBent_txt XE "Point.Bridge.ColumnsPerBent_txt" = "<value>";

|| CONDITIONAL

|| If the site type is a bridge and the information is

|| available, then preferentially use these six values

|| to classify the structure according to the type vectors

|| of Basöz and Kiremidjian (1995, 1996). (If there are

|| strongly contrasting sections of the bridge, these may

|| be enumerated by subscripting, as with the East and West

|| sections of the San Francisco Bay Bridge.)

||

|| The following are the equivalent vector names in Basöz

|| and Kiremidjian (1996) and in Table 3H(d) below:

|| y1n: Point.Bridge.SubstructureMaterial_txt

|| y2n: Point.Bridge.SuperstructureConfiguration_txt

|| y31: Point.Bridge.NumberOfSpans_txt

|| y32: Point.Bridge.AbutmentType_txt

|| y33: Point.Bridge.SpanContinuity_txt

|| y34: Point.Bridge.ColumnsPerBent_txt

||

|| If any one is given, the first four (for single-span

|| bridges) or all six (for multiple-span bridges) should

|| be included. However, for situations where not all are

|| available, subsets are allowed and may be mixed with

|| Point.Bridge.Description_txt.

||

|| Note that a few combinations of Point.Bridge.SubstructureMaterial_txt

|| and Point.Bridge.SuperstructureConfiguration_txt are believed not

|| to exist, at least in California (see reference). Weighted combinations

|| are also possible but are not treated here (yet) except by the option

|| to use subscripting (m) to describe separately several major sections

|| of the bridge. Possible values are listed in Table 3H(d).

|| Descriptors that apply only to dams:

Point.Bridge.Subscript_int XE "Point.Bridge.Index_int" = <value of (m) where this sensor is>;

|| CONDITIONAL

|| If there are more than one (m) in what follows this

|| tag is REQUIRED and points to the Point.Dam[(m)]…

|| pertaining specifically to this Sensor.
Point.Dam[(m)].Description_txt XE "Point.Dam.Description_txt" = "<Terse Description>";

|| CONDITIONAL

|| Brief description of the dam from Table 3H(c).

|| (Subscripted because, although definitions are

|| very general and only one is likely to apply

|| to a particular segment of a dam, there may

|| be multiple segments of differing design.)

||

|| We seek a more detailed description of dams. This

|| descriptive technique should be clear, concise, complete

|| and have at least some degree of acceptance bye the

|| engineering community Please direct suggestions to

|| <jrevans@usgs.gov> or any of the other Working Group

|| members.

Table 3H(b). Siting Conditions, Reference and Free Field

	Name
	Description [or additional information]

	Free field, Ground Response, or Reference Sites (Point.DeploymentDescription(m)_txt):

	"Small fiberglass shelter"
	Small, prefabricated, fiberglass shelter (typically 1 m (1 m (1 m).

	"Small metal shelter"
	Small, prefabricated, metal building (typically 1-2 m (1-2 m (2 m high).

	"Small wood shelter"
	Small, prefabricated or place-built, wood or wood-frame structure (typically 1-2 m (1-2 m (2 m high).

	
	

	"Shallow"
	Sensors buried/set in ground (shallow, near surface).

	Nota Bene
	In the case of reference sites in light or mid-weight buildings, use the apropos "Building Type" listing below, but append the text "; REFERENCE" in capitals to it.

	"Other Free Field"
	Unspecified or unknown free-field site

	"Other Reference"
	Unspecified or unknown reference site

	
	

	Arrays (Point.DeploymentDescription(m)_txt):

	"Geotechnical Array"
	Geotechnical array

	"Dense Array"
	Array with mean spacing of 1.0 to 3.0 km

	"Very Dense Array"
	Array with mean spacing of 0.3 to 1.0 km

	"Ultra-dense Array"
	Array with mean spacing of <0.3 km

	"Other Array"
	Unspecified array

	If all else fails:
	

	"________________"
	USER-EXTENSIBLE LIST (use established, terse, clear, English names or phrases OR tersely cite a paper). Try to keep well below 60 characters.

Table 3H(c). Built Environment Values (CSMIP)

	
	

	Building Structural System (Point.Building.StructuralSystem(m)_txt)
	[Building Height]**:

	"Unreinforced Masonry Bearing Wall"
	[L|M|H]

	"Unreinforced Masonry with Load Bearing Frame"
	[L|M|H]

	"Non-ductile Concrete Moment Frame"
	[L|M|H]

	"Concrete Tilt-up"
	L

	"Reinforced Masonry Wall without Moment Frame"
	M

	"Concrete Shear Wall without Moment Frame"
	[L|M|H]

	"Reinforced Masonry Shear Wall without Moment Frame"
	[L|H]

	"Concrete Shear Wall and Moment Frame"
	H

	"Steel Braced Frame"
	M

	"Precast Concrete (Not Tilt-up)"
	[M|H]

	"Precast Reinforced Concrete (Not Tilt-up)"
	L

	"Braced Steel Frame"
	H

	"Reinforced Masonry Shear Wall and Moment Frame"
	H

	"Ductile Concrete Moment Frame"
	H

	"Moment Resisting Perimeter Steel Frame"
	H

	"Wood Frame"
	L

	"Base Isolated"
	[L|M|H]

	"Hospitals since 1989 (OSHPD)"
	?

	"Retrofitted"
	?

	"Other Building Type"
	?

	
	

	Dams (Point.Dam.Description_txt):

	"Concrete Gravity Dam"
	Concrete gravity dam

	"Concrete Arch Dam"
	Concrete arch dam

	"Engineered Fill Dam"
	Engineered fill dam

	"Hydraulic Fill Dam"
	Hydraulic fill dam

	“Unknown-Fill Dam”
	An earth-fill dam of uncertain type

	"Small Unengineered Dam"
	Small unengineered dam (e.g., cattle pond)

	"Rock Dam"
	Rock dam with impervious core

	"Other Dam"
	Unspecified dam

	
	

	Other Structures (Point.OtherStructure.Description(m)_txt or Point.Building.StructuralSystem(m)_txt):

	"Parking Structure"
	Parking structure

	"Multistory Mall"
	Multistory mall

	"Stadium"
	Sports or performance open-air structure

	
	

	"Other Building"
	Unspecified building

	"Other Structure"
	Unspecified structure

Table 3H(d). Siting Conditions, Bridges

	
	

	Bridge Values (Basöz and Kiremidjian, 1995, 1996):

	"Concrete"
	y11, Point.Bridge.SubstructureMaterial_txt

	"Steel"
	y12, Point.Bridge.SubstructureMaterial_txt

	"Timber"
	y13, Point.Bridge.SubstructureMaterial_txt

	"Masonry"
	y14, Point.Bridge.SubstructureMaterial_txt

	
	

	"Concrete Girder"
	y21, Point.Bridge.SuperstructureConfiguration_txt

	"Steel Girder"
	y22, Point.Bridge.SuperstructureConfiguration_txt

	"Steel Truss"
	y23, Point.Bridge.SuperstructureConfiguration_txt

	"Suspension"
	y24, Point.Bridge.SuperstructureConfiguration_txt

	"Arch"
	y25, Point.Bridge.SuperstructureConfiguration_txt

	
	

	"Single"
	y31, Point.Bridge.NumberOfSpans_txt

	"Multiple"
	

	"<number>"
	

	"Monolithic"
	y32, Point.Bridge.AbutmentType_txt

	"Not Monolithic"
	

	"Continuous"
	y33, Point.Bridge.SpanContinuity_txt

	"Discontinuous"
	

	"Single"
	y34, Point.Bridge.ColumnsPerBent_txt

	"Multiple"
	

	"<number>”
	

	
	

	Bridge Values for Point.Bridge.Description_txt only

	"Other Bridge"
	Unspecified bridge

	<One or more values as needed from Basöz and Kiremidjian (1995, 1996) as in Point.Bridge.Description(m)_txt>
	For example, “Steel Suspension Multiple Spans”

**CSMIP building-type listing, which is the preferred listing to be used for structural ("civil system") arrays in buildings whenever feasible. Notation: "L" = Low Rise (1 to 3 stories); "M" = Medium Rise (4 to 7 stories); "H" = High Rise (8 or more stories); "OSHPD" = Office of Statewide Health Planning and Development. (Shakal, A. F., M.-J. Huang, C. Rojahn, C. Poland, Current building instrumentation programs and guidelines, Proc. Invited Workshop on Strong-Motion Instrumentation of Buildings, Consortium of Organizations for Strong-Motion Observation Systems (COSMOS), 14-15 November, 2001, Emeryville, California, 5–14, 2002.)

NOTE: The specific (maximum) number of a building’s stories above and/or below grade may be given explicitly in Point.Building.NumberOfStories.… or as a general range in Point.Building.Height_txt.

Table 3H(e). Site Type and Built Environment Values – HAZUS Codes

	No.
	HAZUS Building Type
	Description
	Height

	
	
	
	Range
	Typical

	
	
	
	Name
	Stories
	Stories
	Feet

	1
	W1
	Wood, Light Frame (≤ 5,000 sq. ft.)
	
	1 - 2
	1
	14

	2
	W2
	Wood, Commercial and Industrial (> 5,000 sq. ft.)
	
	All
	2
	24

	3
	S1L
	Steel Moment Frame
	Low-Rise
	1 - 3
	2
	24

	4
	S1M
	
	Mid-Rise
	4 - 7
	5
	60

	5
	S1H
	
	High-Rise
	8+
	13
	156

	6
	S2L
	Steel Braced Frame
	Low-Rise
	1 - 3
	2
	24

	7
	S2M
	
	Mid-Rise
	4 - 7
	5
	60

	8
	S2H
	
	High-Rise
	8+
	13
	156

	9
	S3
	Steel Light Frame
	
	All
	1
	15

	10
	S4L
	Steel Frame with Cast-in-Place Concrete Shear Walls
	Low-Rise
	1 - 3
	2
	24

	11
	S4M
	
	Mid-Rise
	4 - 7
	5
	60

	12
	S4H
	
	High-Rise
	8+
	13
	156

	13
	S5L
	Steel Frame with Unreinforced Masonry Infill Walls
	Low-Rise
	1 - 3
	2
	24

	14
	S5M
	
	Mid-Rise
	4 - 7
	5
	60

	15
	S5H
	
	High-Rise
	8+
	13
	156

	16
	C1L
	Concrete Moment Frame
	Low-Rise
	1 - 3
	2
	20

	17
	C1M
	
	Mid-Rise
	4 - 7
	5
	50

	18
	C1H
	
	High-Rise
	8+
	12
	120

	19
	C2L
	Concrete Shear Walls
	Low-Rise
	1 - 3
	2
	20

	20
	C2M
	
	Mid-Rise
	4 - 7
	5
	50

	21
	C2H
	
	High-Rise
	8+
	12
	120

	22
	C3L
	Concrete Frame with Unreinforced Masonry Infill Walls
	Low-Rise
	1 - 3
	2
	20

	23
	C3M
	
	Mid-Rise
	4 - 7
	5
	50

	24
	C3H
	
	High-Rise
	8+
	12
	120

	25
	PC1
	Precast Concrete Tilt-Up Walls
	
	All
	1
	15

	26
	PC2L
	Precast Concrete Frames with Concrete Shear Walls
	Low-Rise
	1 - 3
	2
	20

	27
	PC2M
	
	Mid-Rise
	4 - 7
	5
	50

	28
	PC2H
	
	High-Rise
	8+
	12
	120

	29
	RM1L
	Reinforced Masonry Bearing Walls with Wood or Metal Deck Diaphragms
	Low-Rise
	1 - 3
	2
	20

	30
	RM1M
	
	Mid-Rise
	4+
	5
	50

	31
	RM2L
	Reinforced Masonry Bearing Walls with Precast Concrete Diaphragms
	Low-Rise
	1 - 3
	2
	20

	32
	RM2M
	
	Mid-Rise
	4 - 7
	5
	50

	33
	RM2H
	
	High-Rise
	8+
	12
	120

	34
	URML
	Unreinforced Masonry Bearing Walls
	Low-Rise
	1 - 2
	1
	15

	35
	URMM
	
	Mid-Rise
	3+
	3
	35

	36
	MH
	Mobile Homes
	
	All
	1
	10

Table 3H(f). Occupancy Classes – HAZUS Codes

	HAZUS

 Occupancy Class
	Description

	AGR1
	 Agriculture Facilities and Offices

	COM1
	 Retail Trade

	COM2
	 Wholesale Trade

	COM3
	 Personal and Repair Services

	COM4
	 Professional/Technical Services

	COM5
	 Banks

	COM6
	 Hospital

	COM7
	 Medical Office and Clinic

	COM8
	 Entertainment & Recreation

	COM9
	 Theaters

	COM10
	 Parking Garages

	EDU1
	 Grade Schools and Admin. Offices

	EDU2
	 Colleges and Universities

	GOV1
	 Government - General Services

	GOV2
	 Government - Emergency Response

	IND1
	 Heavy Industrial

	IND2
	 Light Industrial

	IND3
	 Food/Drugs/Chemicals

	IND4
	 Metals/Minerals Processing

	IND5
	 High Technology

	IND6
	 Construction Facilities and Offices

	REL1
	 Churches and Non-Profit Organizations

	RES1
	 Single Family Dwellings

	RES2
	 Manufactured Housing

	RES3A
	 Duplex

	RES3B
	3 to 4 Units

	RES3C
	5 to 9 Units

	RES3D
	 10 to 19 Units

	RES3E
	 20 to 49 Units

	RES3F
	 At lease 50 Units

	RES4
	 Temporary Lodging

	RES5
	 Institutional Dormitories

	RES6
	 Nursing Homes

	UNK
	 Unknown

NIBS, Earthquake Loss Estimation Methodology, HAZUS-99 Service Release 2 (SR2) Technical Manual, prepared by the National Institute of Building Sciences for the Federal Emergency Management Agency, Washington, D.C., 2002.

California Governor’s Office of Emergency Services, Data Standardization Guidelines for Loss Estimation – Populating Inventory Databases for HAZUS 99, 114 pp., 2004.

Table 3I. Event (Earthquake) Information (formerly Table 7 in part)

|| Subscripting certainly may be used to show solutions from multiple institutions (recommended)

|| or (not necessarily recommended) a history of solutions from one institution. The form of

|| that subscripting is “Event.Hypocenter(n). …”.

||

|| Similarly, a subscript may be used when a record contains the traces of more than one event,

|| as may happen in very active aftershock and swarm sequences. The form of that subscripting

|| is "Event(n).etc...", a form of subscripting that should never be used for any other purpose.

|| If any of the Event.Hypocenter.… tags are given, all marked CONDITIONAL are REQUIRED.

Event[(m)].Hypocenter[(n)].Agency_txt XE "Event.Hypocenter.Agency_txt" = “<value>“;

|| CONDITIONAL

|| Originating provider (Agency from Table 3E). This Agency

|| applies to the next 11 tags. If an Event.Hypocenter is

|| provided, this tag is REQUIRED.

Event[(m)].Hypocenter[(n)].DateTime_txt XE "Event.Hypocenter.DateTime_txt" = “YYYY-MM-DD hh:mm:ss.s[ss][Z|[+|-]hh[:mm]]“;

|| DateTime is either the date of computation or the date

|| Recommended

|| these data were obtained from the Agency.

Event[(m)].Hypocenter[(n)].Identifier_txt XE "Event.Hypocenter.Identifier_txt" = "<Agency's Identifier>";

|| Recommended

|| (Unique) identifying string issued by the Agency

|| issuing the Event information. e.g., "nc51153328",

|| or "[Test] Record of ..."

Event[(m)].Hypocenter[(n)].OriginTime.DateTime_txt XE "Event.Hypocenter.OriginTime.DateTime_txt" = "YYYY-MM-DD hh:mm:ss.s[ss][Z|[+|-]hh[:mm]]";

|| ISO DateTime of event origin time. Do not use

|| CONDITIONAL

|| Event.Hypocenter.DateTime_txt for origin times.
Event[(m)].Hypocenter[(n)].OriginTime.TimeError_dbl XE "Event.Hypocenter.OriginTime.TimeError_dbl" = <value> s;

|| Optional

|| Estimated two-sigma

Event[(m)].Hypocenter[(n)].Latitude_dbl XE "Event.Hypocenter.Latitude_dbl" = <value> deg;

|| CONDITIONAL

|| Positive North, decimal degrees

Event[(m)].Hypocenter[(n)].Longitude_dbl XE "Event.Hypocenter.Longitude_dbl" = <value> deg;

|| CONDITIONAL

|| Positive East, decimal degrees

Event[(m)].Hypocenter[(n)].Depth_dbl XE "Event.Hypocenter.Depth_dbl" = <value> <units>;

|| CONDITIONAL

|| Depth below datum (km preferred)

Event[(m)].Hypocenter[(n)].HorizontalDatum_txt XE "Event.Hypocenter.HorizontalDatum_txt" = “<value>“;

|| Optional

|| Table 3G, "Horizontal" or "Mixed" datum (rarely known)

Event[(m)].Hypocenter[(n)].VerticalDatum_txt XE "Event.Hypocenter.VerticalDatum_txt" = “<value>“;

|| Optional

|| Table 3G, "Vertical" or "Mixed" datum (rarely known)

Event[(m)].Hypocenter[(n)].HorizontalError_dbl XE "Event.Hypocenter.HorizontalError_dbl" = <value> <units>;

|| Optional

Event[(m)].Hypocenter[(n)].VerticalError_dbl XE "Event.Hypocenter.VerticalError_dbl" = <value> <units>;

|| Optional

|| (km preferred)

Event[(m)].Hypocenter[(n)].Comments_txt XE "Event.Hypocenter.Comments_txt" = "<Comments>";

|| Optional

|| Any comment on event. If in Comments_txt you need more

|| than one line of text for a particular (n), put them all

|| into one, long string with “lines” separated by the

|| character pair “\n”.

|| Magnitudes, moment tensors, focal solutions, and ShakeMap tags may

|| not be from the same Agency as the rest of the Event information,

|| so those Agencies must be identified separately.

Event[(m)].Magnitude[(n)].Type_txt XE "Event.Magnitude.Type_txt" = ["Mw" | "MS" | "mb" | "MD" | "ML" | "Me" | "Mn" | "Other"];

|| CONDITIONAL

Event[(m)].Magnitude[(n)].Value_dbl XE "Event.Magnitude.Value_dbl" = <value>;

|| CONDITIONAL

Event[(m)].Magnitude[(n)].ValueError_dbl XE "Event.Magnitude.ValueError_dbl" = "<value>";

|| Optional

Event[(m)].Magnitude[(n)].Agency_txt XE "Event.Magnitude.Agency_txt" = "<from Table 3E>";

|| CONDITIONAL

Event[(m)].Magnitude[(n)].DateTime_txt XE "Event.Magnitude.DateTime_txt" = “YYYY-MM-DD[hh:mm:ss.[Z|[+|-]hh[:mm]]]“;

|| CONDITIONAL

Event[(m)].Magnitude[(n)].URL_txt XE "Event.Magnitude.URL_txt" = "<Web address>";

|| Optional

Event[(m)].Magnitude[(n)].Comments_txt XE "Event.Magnitude.Comments_txt" = "<Comments>";

|| Optional

|| The CONDITIONAL Event.Magnitude.… tags above are all

|| REQUIRED if any is given.

||

|| ValueError_dbl is optional and is the accuracy of

|| Value_dbl.

||

|| (The DateTime is either the date ((time) of the

|| magnitude computation or the date these data were

|| obtained from the named Agency. Omit if unavailable.)

||

|| The fifth, Event.Magnitude[(n)].URL_txt, is strongly Recommended

|| for alternately defined magnitudes ("Mx") and for any Moment

|| Magnitude ("Mw") defined in a manner other than that used by

|| the USGS. This Web address should point to a definition of

|| the magnitude and/or its computational method.

||

|| The strings [Mw | MS | mb | MD | ML | Me | Mn | Other]

|| mean Moment Magnitude (Hanks and Kanamori formula, 1979; Mw),

|| teleseismic 20-s surface-wave magnitude(Gutenberg and Richter,

|| 1956; MS), teleseismic body-wave magnitude (IASPEI formula; mb),

|| local-event coda-duration magnitude (MD), any Wood-Anderson

|| equivalent local-event Richter magnitude (Richter, 1935; ML),

|| energy magnitude (Choy and Boatwright, 1995; Me), Nuttli

|| magnitude (Nuttli, 1963; Mn), and any other magnitude (Other).

||

|| For example, see http://eqinfo.ucsd.edu/glossary/glossary.html.

||

|| The above group of tags is independent of the "(n)" indexing of

|| the preceding group of Event.Hypocenter tags. That is, users

|| are able to provide magnitudes from several Agencies even when

|| giving other parameters only from one Agency, or vice versa. A

|| similar situation holds for the Event.MomentTensor, Event.Moment,

|| Event.FocalSolution, and Event.ShakeMap groups of tags below.

||

|| If in Comments you need more than one line of text for a

|| particular (n), put it all into one, long string with “lines”

|| separated by the character pair “\n”.

Event[(m)].Moment_dbl XE "Event.Moment_dbl" = <value> <Nm | dyne-cm>;

|| Optional

Event[(m)].Moment.Agency_txt XE "Event.Moment.Agency_txt" = "<Table 3E>";

|| CONDITIONAL
Event[(m)].Moment.DateTime_txt XE "Event.Moment.DateTime_txt" = “YYYY-MM-DD[hh:mm:ss[Z|[+|-]hh[:mm]]]“;
|| CONDITIONAL

|| DateTime is either the date ((time) of computation or

|| when these data were obtained from the named Agency.

Event[(m)].MomentTensor[(n)].URL_txt XE "Event.MomentTensor.URL_txt" = "<Web address>";

|| Optional

|| Web address of moment-tensor solution for this Event.

||

|| If an Event.MomentTensor.… is specified, all the

|| CONDITIONAL tags below are REQUIRED:

Event[(m)].MomentTensor[(n)].Agency_txt XE "Event.MomentTensor.Agency_txt" = "<Table 3E>";

|| CONDITIONAL
Event[(m)].MomentTensor[(n)].DateTime_txt XE "Event.MomentTensor.DateTime_txt" = “YYYY-MM-DD[hh:mm:ss[Z|[+|-]hh[:mm]]]“;

|| DateTime is either the date ((time) of computation or

|| CONDITIONAL

|| when these data were obtained from the named Agency.

Event[(m)].MomentTensor[(n)].CoordinateSystem_txt XE "Event.MomentTensor.CoordinateSystem_txt" = <”[U|D][N|S][E|W]” in (x,y,z) order>;

|| These are the directions of the positive axes. The most

|| CONDITIONAL

|| common coordinate system is that of Aki and Richards, "NED",

|| however, Harvard moment tensors are "USE".

Event[(m)].MomentTensor[(n)].M(i)_dbl XE "Event.MomentTensor.M(i)_dbl" = <value> [Nm | dyne-cm];

|| CONDITIONAL

|| These are the six values of a symmetric moment tensor in

|| Newton-meters or dyne-centimeters (n=1,2,3,4,5,6). They

|| are given as a vector in the order:

||

|| - -

|| | 1 2 3 |

|| | 4 5 |

|| | 6 |

|| - -

||

|| Again, while the above is the most common in numerical

|| processing, Harvard does it differently:

||

|| - -

|| | 1 6 5 |

|| | 2 4 |

|| | 3 |

|| - -

||

|| The Agency producing this CTF file is responsible for rearranging

|| the Harvard or any other atypical order into the former when storing

|| such moment tensors here.

Event[(m)].MomentTensor[(n)].Comments_txt XE "Event.MomentTensor.Comments_txt" = "<Comments>";

|| Optional

|| If in Event.MomentTensor.Comments_txt you need more than

|| one line of text in put it all into one, long string with

|| “lines” separated by the pair “\n”.

Event[(m)].FocalSolution[(n)].Agency_txt XE "Event.FocalSolution.Agency_txt" = "<Table 3E>";

|| CONDITIONAL

Event[(m)].FocalSolution[(n)].DateTime_txt XE "Event.FocalSolution.DateTime_txt" = “YYYY-MM-DD[hh:mm:ss [Z|[+|-]hh[:mm]]]“;

|| CONDITIONAL

Event[(m)].FocalSolution[(n)].Strike_dbl XE "Event.FocalSolution.Strike_dbl" = <value> deg;

|| CONDITIONAL

Event[(m)].FocalSolution[(n)].Dip_dbl XE "Event.FocalSolution.Dip_dbl" = <value> deg;

|| CONDITIONAL

Event[(m)].FocalSolution[(n)].Rake_dbl XE "Event.FocalSolution.Rake_dbl" = <value> deg;

|| CONDITIONAL

Event[(m)].FocalSolution[(n)].Comments_txt XE "Event.FocalSolution.Comments_txt" = "<Comments>";

|| Optional

|| All FocalSolution tags are REQUIRED (except the Comments)

|| if any is given, but as a group are Optional:

||

|| DateTime is either the date ((time) of computation or when
|| CONDITIONAL

|| these data were obtained from the named Agency. Strike is

|| 0-360 degrees clockwise from North, Dip is 0-90 degrees

|| down to the right when facing in the Strike direction (thus,

|| the hanging wall is on the viewer’s right), and Rake is

|| rupture motion 0-360 degrees counterclockwise from the

|| Strike direction when viewed from the hanging wall side).

||

|| For Comments, If multiple “lines” of text are needed for

|| a particular (n), join them into a single text string,

|| with the line breaks indicated by the character pair “\n”.

Event[(m)].ShakeMap[(n)].Agency_txt XE "Event.ShakeMap.Agency_txt" = "<Table 3E>";

|| CONDITIONAL

Event[(m)].ShakeMap[(n)].DateTime_txt XE "Event.ShakeMap.DateTime_txt" = “YYYY-MM-DD[hh:mm:ss [Z|[+|-]hh[:mm]]]“;

|| CONDITIONAL

Event[(m)].ShakeMap[(n)].URL_txt XE "Event.ShakeMap.URL_txt" = "<Web address>";

|| CONDITIONAL

|| If of these one tags is given, all three tags are Recommended.

|| DateTime is either the date ((time) of computation or when

|| these data were obtained from the named Agency. URL is the

|| Web address of the ShakeMap for this event associated with

|| its responsible Agency.

Event[(m)].ShakeMap[(n)].Comments_txt XE "Event.ShakeMap.Comments_txt" = "<Comments>";

|| Optional

|| If multiple “lines” of text are needed for a particular

|| (n), join them into a single text string, with the line

|| breaks indicated by the character pair “\n”.

Event[(m)].FaultRupture[(n)].Segment[(i)].Latitude_dbl XE "Event.FaultRupture.Segment(i).Latitude_dbl" = <value> deg;

|| CONDITIONAL

Event[(m)].FaultRupture[(n)].Segment[(i)].Longitude_dbl XE "Event.FaultRupture.Segment(i).Longitude_dbl" = <value> deg;

|| CONDITIONAL

Event[(m)].FaultRupture[(n)].Segment[(i)].Depth_dbl XE "Event.FaultRupture.Segment(i).Depth_dbl" = <value> km;

|| CONDITIONAL

Event[(m)].FaultRupture[(n)].Segment[(i)].Strike_dbl XE "Event.FaultRupture.Segment(i).Strike_dbl" = <value> deg;

|| CONDITIONAL

Event[(m)].FaultRupture[(n)].Segment[(i)].Dip_dbl XE "Event.FaultRupture.Segment(i).Dip_dbl" = <value> deg;

|| CONDITIONAL

Event[(m)].FaultRupture[(n)].Segment[(i)].Rake_dbl XE "Event.FaultRupture.Segment(i).Rake_dbl" = <value> deg;

|| Optional

Event[(m)].FaultRupture[(n)].Agency_txt XE "Event.FaultRupture.Agency_txt" = "<Table 3E>";

|| CONDITIONAL

Event[(m)].FaultRupture[(n)].DateTime_txt XE "Event.FaultRupture.DateTime_txt" = “YYYY-MM-DD[hh:mm:ss [Z|[+|-]hh[:mm]]]“;

|| Recommended

Event[(m)].FaultRupture[(n)].URL_txt XE "Event.FaultRupture.URL_txt" = “<Web address>”;

|| Optional

Event[(m)].FaultRupture[(n)].Citation_txt XE "Event.FaultRupture.Citation_txt" = “<Citation>”;

|| Optional

Event[(m)].FaultRupture[(n)].Comments_txt XE "Event.FaultRupture.Comments_txt" = “<Comments>”;

|| Optional

|| For a model supplied by Event.FaultRupture.Agency_txt at

|| Event.FaultRupture.DateTime_txt [the date ((time)] the

|| model was created or the when it was provided for this

|| CTF file), these tags provide for a detailed description

|| of fault-rupture segments.

||

|| The first six of these tags form vectors (i) describing

|| rupture-surface segments in a particular model (n) of a

|| particular Event(m). Where one tag is present for a

|| given rupture segment (i), all other elements are

|| REQUIRED for that (i), excepting Rake, DateTime,

|| URL, Citation, and Comments.

||

|| (The latter three, URL, Citation, and Comments, can be

|| used to point to or provide a more detailed descrtiption

|| and/or attribution of the model.

||

|| The Strike, Dip, and Rake defined as in

|| Event.FocalSolution. Latitude, Longitude, and Depth

|| are of the proximal upper corner of the segment,

|| viewed in the Strike direction. Depth is relative

|| to mean sea level.

||

|| To be clear: the (n) above indicates a particular model

|| while (i) above indicates a particular rupture segment

|| within that model. (There will often be an (i), sometimes

|| an (n), but only rarely an (m) indicating one of several

|| events recorded in this single DataSeries.)
--

Table 3J(a). Data-Acquisition Unit (DAU; Recorder; Data Logger) Information

|| “DAU” means “Data Acquisition Unit”, the recording and telemetry system.

|| It does not include the Sensor (a “DAS” is a DAU plus sensors in ANSS

|| parlance).

||

|| Where not otherwise indicated, provide values for the particular

|| recording stream issuing the time series leading to this DataSeries.

DAU.Model_txt XE "DAU.Model_txt" = “<value>“;

|| REQUIRED

|| The DAU capturing this DataSeries; from Table 3J(b).

DAU.Manufacturer_txt XE "DAU.Manufacturer_txt" = “<value>“;

|| REQUIRED

|| From Table 3J(b).

DAU.SerialNumber_txt XE "DAU.SerialNumber_txt" = “<value>“;

|| REQUIRED

|| Serial Number as given by DAU manufacturer.

DAU.StorageMedium_txt XE "DAU.StorageMedium_txt" = ["Film" | “Photo Paper" | "Floppy” | "Tape" | …

"Cassette" | "Hard Disk" | "Flash" | "CD" | "DVD" | …];
|| Optional

|| CHOOSE one of those listed whenever applicable.

|| Others types will emerge as technology advances,

|| thus, this is a USER-EXTENSIBLE LIST. If none of

|| those listed above applies, please invent some new,

|| terse, very clear, English name.

DAU.TotalChannels_int XE "DAU.TotalChannels_int" = <value>;

|| Recommended

|| Total number of channels in DAU (cf. Array.TotalChannels_int,

|| Array.TotalRecorders_int, Sensor.ArrayChannel_int, and

|| Sensor.DAUchannel_int)

DAU.TotalChannelsRecorded_int XE "DAU.TotalChannelsRecorded_int" = <value>;

|| Optional

|| Total number of channels in DAU that recorded this Event.

DAU.ChannelGain_dbl XE "DAU.ChannelGain_dbl" = <value> dB;

|| REQUIRED

|| The total gain applied between the Sensor and the ADC

|| (as deciBells, so that zero means "no gain applied").

DAU.AntiAliasFilter[(m)].Corner_dbl XE "DAU.AntiAliasFilter.Corner_dbl" = <value> Hz;

|| REQUIRED

|| Analog anti-alias (low pass) filter –3 dB point.

DAU.AntiAliasFilter[(m)].Decay_dbl XE "DAU.AntiAliasFilter.Decay_dbl" = <value> dB/octave;

|| REQUIRED

|| Analog anti-alias filter roll-off (decay) rate.

|| The optional (m) because many modern systems have

|| both an analog anti-alias filter and a digital

|| downsampling filter in the ADC which effectively

|| acts as a second anti-alias filter.

|| The transfer function of the DAU is best described by poles and zeroes or their

|| polynomial equivalents, preferably in the Laplace (S) plane but alternately in the

|| z-plane. These are the preferred forms. If less is known about this transfer

|| function, you may use the DAU.AntiAliasFilter and DAU.ChannelGain_dbl tags for

|| a more basic description of many DAUs.

||

|| DAU.TransferFunction.FilterName_txt and one or the other set of tags are jointly

|| REQUIRED if any is given (unless, of course, the apropos number of poles, zeros,

|| or coefficients is zero, in which case those Root_cpx or Coefficient_dbl tags

|| may be omitted):

DAU.TransferFunction.FilterName_txt XE "DAU.TransferFunction.FilterName_txt" = “<value>“;

|| CONDITIONAL

|| Preferably one of the following:

|| "S-plane Poles/Zeros"

|| "z-plane Poles/Zeros"

|| “S-plane Polynomial”

|| “z-plane Polynomial”

|| but may be any value from Table 3O if using only

|| DAU.AntiAliasFilter and DAU.ChannelGain_dbl.

DAU.TransferFunction.Causality_txt XE "DAU.TransferFunction.Causality_txt" = ["Causal" | "Acausal" | "Zero Phase"];
|| Optional

|| The causality of the DAU.TransferFunction.… is implicit

|| in either of the following formal descriptions, but may

|| be indicated here if desired. Modern delta-sigma

|| recorders are formally “Acausal” though the distinction

|| matters primarily at high frequencies.

|| Either

DAU.TransferFunction.PoleZero.Numerator.NumberOfRoots_int XE "DAU.TransferFunction.PoleZero.Numerator.NumberOfRoots_int" = <0, 1, 2, ...>;
|| CONDITIONAL

DAU.TransferFunction.PoleZero.Denominator.NumberOfRoots_int XE "DAU.TransferFunction.PoleZero.Denominator.NumberOfRoots_int" = <0, 1, 2, ...>;
|| CONDITIONAL

DAU.TransferFunction.PoleZero.Numerator.Root(m)_cpx XE "DAU.TransferFunction.PoleZero.Numerator.Root(m)_cpx" = <real> <imaginary>;
|| CONDITIONAL

DAU.TransferFunction.PoleZero.Denominator.Root(m)_cpx XE "DAU.TransferFunction.PoleZero.Denominator.Root(m)_cpx" = <real> <imaginary>;
|| CONDITIONAL

|| or
DAU.TransferFunction.Polynomial.Numerator.NumberOfCoeff_int XE "DAU.TransferFunction.Polynomial.Numerator.NumberOfCoeff_int" = <value>;

|| CONDITIONAL
DAU.TransferFunction.Polynomial.Denominator.NumberOfCoeff_int XE "DAU.TransferFunction.Polynomial.Denominator.NumberOfCoeff_int" = <value>;
|| CONDITIONAL
DAU.TransferFunction.Polynomial.Numerator.Coefficient(m)_dbl XE "DAU.TransferFunction.Polynomial.Numerator.Coefficient(m)_dbl" = <value>;

|| CONDITIONAL
DAU.TransferFunction.Polynomial.Denominator.Coefficient(m)_dbl XE "DAU.TransferFunction.Polynomial.Denominator.Coefficient(m)_dbl" = <value>;
|| CONDITIONAL

DAU.CountSize_dbl XE "DAU.CountSize_dbl" = <value> <units>;

|| REQUIRED

|| Size of one count (the least significant bit) of the DAU

|| analog-to-digital converter. Units may be V, mV, uV,

|| g_local, mg_local, ug_local, g_standard, mg_standard,

|| ug_standard, cm/s/s, or any other time-series unit that

|| makes sense in this context.

DAU.FullScale_dbl XE "DAU.FullScale_dbl" = <value> <units>;

|| Recommended

|| Same units as DAU.CountSize_dbl but the (two-sided

|| full scale range of the digitizer.
DAU.WordLength_int XE "DAU.WordLength_int" = <value>;

|| REQUIRED

|| In bits. For example, a "successive-approximation" analog-

|| to-digital converter recording in two's-compliment integers,

|| if this value were N, can save values in the range 2^(N-1)

|| to (1 - 2^(N-1)). For N=16, the range is -32767 to +32768

|| (although some systems enforce symmetry — thus, (32767).

DAU.DynamicRange_dbl XE "DAU.DynamicRange_dbl" = <value> dB;

|| Recommended

|| Effective system dynamic range, sensors plus recorder, as

|| defined by ANSS, near 1 Hz or mid-band: Ratio between just-

|| clipping sine wave RMS and noise RMS in one-half-octave bin

|| centered at (about) 1.0 Hz (if that is well inside the pass-

|| band) or otherwise near the center of the pass-band.

DAU.EffectiveBits_dbl XE "DAU.EffectiveBits_dbl" = <value>;

|| Optional

|| Bits = log2(<total ADC counts> / (2 * <RMS noise counts>)).

|| Equally, the peak-to-peak g's versus the RMS noise g's are

|| reduced to "bits" by a base-2 log. Therefore, let "R" be

|| DAU.DynamicRange_dbl expressed as an amplitude ratio, hence

|| R = < peak-to-peak g's > / <root 2> / <noise RMS g's>. Thus,

|| DAU.EffectiveBits_dbl = log2(DAU.DynamicRange_dbl) - 0.5;

|| (It would be "-1.0" to account for the double-sidedness of

|| of bit-counts versus the single-sidedness of RMS, however a

|| dynamic range involves a clipping sine wave while bit counts

|| compares the full range of the ADC – another square root of

|| two separates the metrics.)

DAU.CompressionUsed.Type_txt XE "DAU.CompressionUsed.Type_txt " = [”None” | “Steim” | ”Reed-Solomon” | ”Wavelet” | …

”Cosine” | ”Other Lossless” | ”Other Lossy”];

|| Optional

DAU.CompressionUsed.Citation_txt XE "DAU.CompressionUsed.Citation_txt " = <”<Citation>”>;

|| Optional

|| Any compression algorithm applied to the data prior

|| to storage or transmission by the DAU. The Type should

|| be supplied and the Citation also may be given.

DAU.Comments_txt XE "DAU.Comments_txt" = “<Comments>”;

|| Optional

|| Any comments about the DAU or its operation (for items

|| not covered by defined DAU tags). If multiple “lines”

|| of text are needed, join them into a single text string,

|| with the line breaks indicated by the character pair “\n”.

--

NB: Pre-event and post-event durations have been moved to Record data, since they may vary by record. Film digitizer Y-step has moved similarly.

Table 3J(b). DAU Models and Manufacturers (formerly Table 9)

	Model Name
	Manufacturer

	Analog Recorders:

	"USCGS Standard"
	

	"AR-240"
	Teledyne

	"RFT-250"
	

	"RFT-350"
	

	"MO-2"
	(New Zealand)

	"RMT-280"
	

	"SMA-1"
	Kinemetrics

	"SMA-2"
	

	"SMA-3"
	

	"CRA-1"
	

	
	

	Digital Recorders:

	"DSA-1"
	Kinemetrics

	"DSA-3"
	

	"PDR-1"
	

	"PDR-2"
	

	"SSA-1"
	

	"SSA-2"
	

	"SSA-16"
	

	"SSR-1"
	

	"K2"
	

	"Etna"
	

	"Mt Whitney"
	

	"Everest"
	

	"DR-100"
	Sprengnether

	"DR-200"
	

	"DR-300"
	

	"DR-3016"
	

	"DR-3024"
	

	"DCA-300"
	Terratech

	"DCA-310"
	

	"DCA-333"
	

	"IDS-3602"
	Terratech (IDS)

	"IDS-3602A"
	Terratech (IDSA)

	"A700"
	Geotech

	"A800"
	

	"A900"
	

	"A900A"
	

	"GEOS"
	U.S. Geological Survey

	"DST"
	

	"Earthworm"
	

	"TREMOR"
	

	"Q4120"
	Quanterra

	"Q4128a"
	

	"Q730"
	

	"Q736"
	

	"Q980"
	

	"72A"
	RefTek

	"130-ANSS"
	

	"130-SM"
	

	
	

	Miscellaneous:

	"Other Analog"
	Unknown; legacy

	"Other Digital"
	Unknown; legacy

	
	

	"______________"
	USER-EXTENSIBLE LIST (use established, terse, clear, English names)

	Manufacturers of DAUs and of Sensors:

	"Akashi"
	

	"Canadian Geological Survey"
	

	"GeoSIG"
	

	"Geotech"
	

	"Guralp"
	

	"Kinemetrics"
	

	"Lennartz"
	

	"Mark Products"
	

	"(New Zealand)"
	

	"Quanterra"
	

	"RefTek"
	

	"Sprengnether"
	

	"Streckeisen"
	

	"Teledyne"
	

	"Terratech"
	

	"Terratech (IDS)"
	

	"Terratech (IDSA)"
	

	"Tokyo Sokushin"
	

	"USCGS"
	

	"U.S. Geological Survey"
	

	"Wilcoxon"
	

	
	

	"______________"
	USER-EXTENSIBLE LIST (use established, terse, clear, English names, but not necessarily the full, official corporate name as long as it is quite clear)

Table 3K(a). Sensor Information

Sensor.Model_txt XE "Sensor.Model_txt" = “<value>“;

|| REQUIRED

|| From Table 3K(b).

Sensor.Manufacturer_txt XE "Sensor.Manufacturer_txt" = “<value>“;

|| REQUIRED

|| From Table 3J(b).

Sensor.SerialNumber_txt XE "Sensor.SerialNumber_txt" = “<value>“;

|| REQUIRED

|| Sensor serial number.

|| The orientation of a vector (the sensor's positive active axis) in space

|| is uniformly and uniquely representable by two numbers, inclination and

|| azimuth. This two-element vector is the preferred description of
|| orientation. Inclination is always given relative to plumb (Earth

|| acceleration vector) from 0 to 180 degrees with 0 being a positive
|| output for upward ground motion. Azimuth is always represented East

|| from North, from 0 to 359.999…, but may be either absolute or relative

|| to some stated Array reference Azimuth (the latter in the same format

|| as an absolute Azimuth). Relative Azimuth is often the best available

|| for and Array in a structure.

|| Absolute orientation:

Sensor.Azimuth.Value_dbl XE "Sensor.Azimuth.Value_dbl" = <value> deg;

|| CONDITIONAL

|| Sensor azimuth, clockwise from true geographic North

|| (always give zero for verticals).

||

|| REQUIRED unless Sensor.RelativeAzimuth.Value_dbl and

|| Array.Azimuth.Value_dbl are both given.

Sensor.Inclination.Value_dbl XE "Sensor.Inclination.Value_dbl" = <value> deg;

|| REQUIRED

|| Positive up = 0, horizontal = 90, positive down = 180.

|| Relative azimuth:

Sensor.RelativeAzimuth.Value_dbl XE "Sensor.RelativeAzimuth.Value_dbl" = <value> deg;

|| CONDITIONAL

|| Like Sensor.Azimuth.Value_dbl but 0 to 359.999… referenced

|| to Array.Azimuth.Value_dbl rather than to true North. In all

|| cases, still paired with Sensor.Inclination.Value_dbl.

Array.Azimuth.Value_dbl XE "Array.Azimuth.Value_dbl" = <value> deg;

|| CONDITIONAL

|| Azimuth of reference “North” versus true geographic North,

|| following the same format as for Sensor.Azimuth.Value_dbl.

|| The absolute Azimuth of the sensor is the (modulo 360) sum of

|| Sensor.RelativeAzimuth.Value_dbl and Array.Azimuth.Value_dbl

||

|| Sensor.RelativeAzimuth.Value_dbl and Array.Azimuth.Value_dbl

|| are jointly REQUIRED if Sensor.Azimuth.Value_dbl is not given.

Alternate description:

Sensor.Orientation_txt XE "Sensor.Orientation_txt" = “<value>“;

|| Avoid

|| This tag is supplied only for backward compatibility or

|| for preliminary use and its application is discouraged.

|| Its value is taken from Table 3K(c).

|| Of the orientation tags above, Sensor.Azimuth.Value_dbl and Sensor.Inclination.Value_dbl
|| are the preferred set. In many arrays, however, orientations are given relative to a

|| structure or some other reference orientation, and in this case use the tag set

|| Sensor.RelativeAzimuth.Value_dbl, Array.Azimuth.Value_dbl and Sensor.Inclination.Value_dbl.
|| Only as a last choice should you use Sensor.Orientation_txt, which use is discouraged.

||

|| Associated tags are:

Sensor.Azimuth.ValueError_dbl XE "Sensor.Azimuth.ValueError_dbl" = <value> deg;

|| Optional

|| Two-sigma estimate for absolute

Sensor.Inclination.ValueError_dbl XE "Sensor.Inclination.ValueError_dbl" = <value> deg;

|| Optional

|| Two-sigma estimate

Sensor.RelativeAzimuth.ValueError_dbl XE "Sensor.RelativeAzimuth.ValueError_dbl" = <value> deg;

|| Optional

|| Two-sigma estimate

Array.Azimuth.ValueError_dbl XE "Array.Azimuth.ValueError_dbl" = <value> deg;

|| Optional

|| Two-sigma estimate for relative

Sensor.ArrayChannel_int XE "Sensor.ArrayChannel_int" = <value>;

|| Recommended

|| Array-channel that this sensor is on

Sensor.DAUchannel_int XE "Sensor.DAUchannel_int" = <value>;

|| Recommended

|| The DAU-channel that this sensor recorded on (if on

|| film, count down from top, the first being 1, not 0)

|| (cf. Array.TotalChannels_int, Array.TotalRecorders_int,

|| and DAU.TotalChannels_int)

Sensor.Sensitivity_dbl XE "Sensor.Sensitivity_dbl" = <value> <units>;

|| REQUIRED

|| Sensor sensitivity: units for film are cm/g_standard or

|| cm/g_local. Units for other systems are V/g_standard,

|| V/g_local, V/(cm/s/s) or V/(xxx), where "xxx" is one of

|| the other units of acceleration, velocity, displacement,

|| rotation, pressure, ustrain, etc., and the parentheses

|| are only needed for complex units.

||

|| IN ALL CASES, this sensitivity value is to be as measured

|| AS CLOSE AS POSSIBLE to the raw sensor, or in the case of

|| FBAs and similarly "conditioned" sensors, AT THE OUTPUT of

|| that conditioning circuit, but before any DAU amplification,

|| filtering, and before digitization.

Sensor.FullScaleOut_dbl XE "Sensor.FullScaleOut_dbl" = <value> <units>;

|| REQUIRED

|| Peak output of the sensor. Same measurement rules

|| as apply to Sensor.Sensitivity_dbl.
Sensor.FullScaleIn_dbl XE "Sensor.FullScaleIn_dbl" = <value> <units>;

|| Recommended

|| Peak unclipped Earth signal in units apropos to that

|| sensor; generally g_local, g_standard, or cm/s/s for

|| accelerometers; the same measurement rules apply as

|| for Sensor.Sensitivity_dbl.

Sensor.SensitivityContext_txt XE "Sensor.SensitivityContext_txt" = “<value>“;

|| Recommended

|| The context in which Sensor.Sensitivity_dbl,

|| Sensor.FullScaleOut_dbl, and Sensor.FullScaleIn_dbl were

|| measured. For example, "At output of FBA".

|| The transfer function of the Sensor is best described by poles and zeroes or their

|| equivalent polynomial coefficients, preferably in the Laplace (S) plane but alternately

|| in the z-plane. These are the preferred forms. Alternate, less complete forms are

|| given later.

||

|| If the first tag is given, then one or the other subsequent sets of four tags are

|| jointly REQUIRED (excepting, of course, either the Numerator or the Denominator may

|| have no coefficients or roots, in which case the whole may be omitted and will be

|| assumed to be unity).

||

|| The detailed definitions of these filter classes is to be found in Table 3O,

|| which discusses Processing.Filter.

Sensor.TransferFunction.FilterName_txt XE "Sensor.TransferFunction.FilterName_txt" = “<value>“;

|| CONDITIONAL

|| One of the following only:

|| "S-plane Poles/Zeros"

|| "z-plane Poles/Zeros"

|| “S-plane Polynomial”

|| “z-plane Polynomial”

|| (cf., Table 3O).

|| and either

Sensor.TransferFunction.PoleZero.Numerator.NumberOfRoots_int XE "Sensor.TransferFunction.PoleZero.Numerator.NumberOfRoots_int" = <0, 1, 2, ...>;|| CONDITIONAL

Sensor.TransferFunction.PoleZero.Denominator.NumberOfRoots_int XE "Sensor.TransferFunction.PoleZero.Denominator.NumberOfRoots_int" = <0, 1, 2, ...>;|| CONDITIONAL

Sensor.TransferFunction.PoleZero.Numerator.Root(m) XE "Sensor.TransferFunction.PoleZero.Numerator.Root(m)_cpx" _cpx = <real> <imaginary>;
|| CONDITIONAL

Sensor.TransferFunction.PoleZero.Denominator.Root(m)_cpx XE "Sensor.TransferFunction.PoleZero.Denominator.Root(m)_cpx" = <real> <imaginary>;|| CONDITIONAL

|| or

Sensor.TransferFunction.Polynomial.Numerator.NumberOfCoeff_int XE "Sensor.TransferFunction.Polynomial.Numerator.NumberOfCoeff_int" = <value>;
|| CONDITIONAL
Sensor.TransferFunction.Polynomial.Denominator.NumberOfCoeff_int XE "Sensor.TransferFunction.Polynomial.Denominator.NumberOfCoeff_int" = <value>;
|| CONDITIONAL
Sensor.TransferFunction.Polynomial.Numerator.Coefficient(m)_dbl XE "Sensor.TransferFunction.Polynomial.Numerator.Coefficient(m)_dbl" = <value>;
|| CONDITIONAL
Sensor.TransferFunction.Polynomial.Denominator.Coefficient(m)_dbl XE "Sensor.TransferFunction.Polynomial.Denominator.Coefficient(m)_dbl" = <value>;
|| CONDITIONAL

|| Less complete or general descriptions of sensor behavior:

Sensor.NaturalFrequency.Value_dbl XE "Sensor.NaturalFrequency.Value_dbl" = <value> Hz;

|| CONDITIONAL

|| Sensor's natural frequency

Sensor.Damping.Value_dbl XE "Sensor.Damping.Value_dbl" = <value>;

|| CONDITIONAL

|| Sensor's damping (as a fraction of critical).

|| This pair jointly REQUIRED if either is given.

Sensor.NaturalFrequency.ValueError_dbl XE "Sensor.NaturalFrequency.ValueError_dbl" = <value> Hz;

|| Optional

Sensor.Damping.ValueError_dbl XE "Sensor.Damping.ValueError_dbl" = <value>;

|| Optional

|| Estimated two-sigma

Sensor.HighPass.Corner_dbl XE "Sensor.HighPass.Corner_dbl" = <value> Hz;

|| CONDITIONAL

|| Sensor low-frequency corner (0.0 Hz for many accelerometers)

Sensor.HighPass.Decay_dbl XE "Sensor.HighPass.Decay_dbl" = <value> dB/octave;

|| CONDITIONAL

|| Sensor low-frequency roll-off, if Sensor.HighPass.Corner_dbl

|| is not zero. This pair jointly REQUIRED if either is given.

Sensor.LowPass.Corner_dbl XE "Sensor.LowPass.Corner_dbl" = <value> Hz;

|| CONDITIONAL

|| Sensor high-frequency corner, if present in

|| addition to Sensor.NaturalFrequency.Value_dbl.

Sensor.LowPass.Decay_dbl XE "Sensor.LowPass.Decay_dbl" = <value> dB/octave;

|| CONDITIONAL

|| Sensor high-frequency roll-off.

|| This pair jointly REQUIRED if either is given.

Sensor.Comments_txt XE "Sensor.Comments_txt" = "<Comments>";

|| Optional

|| Specify which "Other" Sensors and any Comments about the

|| Sensor or its operation not otherwise covered by defined

|| Sensor tags.

||

|| If multiple “lines” of text are needed, join them into

|| a single text string, with the line breaks indicated by

|| the character pair “\n”.

--

Notes:

(1) We realize that some of the "required" tags may not be known, particularly for legacy data — these still must be present and given the value NULL (no quotes).

(2) "Gain applied to sensor output ..." has moved to DAU information, because amplifiers are part of the recorder.

(3) For sensor azimuths, now see: Sensor.Azimuth.Value_dbl or Sensor.RelativeAzimuth.Value_dbl plus Array.Azimuth.Value_dbl or as a last choice Sensor.Orientation_txt.

(4) For location offsets (in meters) of Points in arrays, now see Point.Location.NorthOffset_dbl, Point.Location.EastOffset_dbl, and Point.Location.ElevationOffset_dbl in Table 3F.

Table 3K(b). Sensor Models (modified from Table 10; Use Table 3J(b) for Manufacturers)

	

	Accelerometers:

	"Optical-Mechanical" (SMA, RFT,…)
	Any

	"FBA-1"
	Kinemetrics

	"FBA-3"
	

	"FBA-11"
	

	"FBA-13"
	

	"FBA-13DH"
	

	"FBA-23"
	

	"FBA-23DH"
	

	"EpiSensor"
	

	"EpiSensor ES-U"
	

	"FBX-23"
	Sprengnether

	"FBX-26"
	

	"SSA 120"
	Terratech

	"SSA 220"
	

	"SSA 320"
	

	"731A"
	Wilcoxon

	"CMG-5"
	Guralp

	
	

	Velocity Sensors/Seismometers:

	"SS-1 Ranger"
	Kinemetrics

	"S-3000"
	Sprengnether

	"CMG-1"
	Guralp

	"CMG-3T"
	

	"CMG-3ESP"
	

	"CMG-40"
	

	"STS-1"
	Sprengnether

	"STS-2"
	

	"L4"
	Mark Products

	"L22D"
	

	
	

	Other Sensors (which may be specified in Sensor.Comments_txt):

	"Other Accelerometer"
	Unknown or legacy sensor (in preference, please use the User-Extensible option and provide a real model name)

	"Other Velocity Seismometer"
	

	"Pressure Sensor"
	Various (in preference, please use the User-extensible option and provide a real model name)

	"Dilatometer"
	

	"Relative Displacement Sensor"
	

	"Rotational Sensor"
	

	"Other Sensor"
	

	
	

	"___________________"
	USER-EXTENSIBLE LIST (use established, terse, clear, English names)

Table 3K(c). Sensor Direction Codes (formerly Table 11) for use with Sensor.Orientation_txt only — Avoid

	Abbreviation
	Orientation*

	 "1"-"360"
	Horizontal azimuth, clockwise (East) from North (in this case, it is preferable to use Sensor.Azimuth.Value_dbl with Sensor.Inclination.Value_dbl = 90 deg;)

	"1001"-"1360"
	Horizontal azimuth (deg + 1000) relative to Channel 1, if absolute is unknown (e.g., Channel 2 is "1090" if it is 90 deg East of Channel 1).

(In this case it is preferable to use Array.Azimuth.ValueError_dbl = Inf deg; since "Inf" is a recognized IEEE floating point value and renders any value of reference azimuth, Array.Azimuth.Value_dbl, "unknown" while still allowing one to express a relative azimuth of the current DataSeries as Sensor.RelativeAzimuth.Value_dbl.)

	

	"Up"
	Vertical, positive up (It is preferable to use Sensor.Inclination.Value_dbl = 0 deg; and Sensor.Azimuth.Value_dbl = 0 deg;)

	"Down"
	Vertical, positive down (It is preferable to use Sensor.Inclination.Value_dbl = 180 deg; and Sensor.Azimuth.Value_dbl = 0 deg;)

	"Vertical"
	Vertical, sense not known (It is preferable to use Sensor.Inclination.Value_dbl = 0 deg; Sensor.Azimuth.Value_dbl = 0 deg; and Sensor.Inclination.ValueError_dbl = Inf deg; the latter to indicate complete uncertainty)

	Specific to geotechnical and other active-source arrays**

	"Radial"
	Radial, positive outward from the source. (In these four cases, it is preferable to use Sensor.Inclination.Value_dbl = <value> deg; Sensor.Azimuth.Value_dbl = <value> deg; and a SNCL name with "HNT" or "HNR" to indicate this relationship to a source.

	"AntiRadial"
	Radial, positive inward toward the source

	"Transverse"
	Transverse, 90(clockwise in map view from the Radial component (to the right as viewed from the source)

	"AntiTransverse"
	Transverse, 90(clockwise in map view from AntiRadial component (to the left as viewed from the source)

	Specific to structures (e.g., bridges)**

	800 or "Longitudinal"
	Along long axis of structure, positive in the more northerly of the two possible directions. (It is preferable to use the relative-azimuth option in these cases, with Sensor.RelativeAzimuth.Value_dbl = 0 deg; and Array.Azimuth.Value_dbl = <value> deg; for the structure.)

	-800 or "AntiLongitudinal"
	Along long axis of structure, positive in the more southerly of the two possible directions.

	900 or "ShortAxis"
	Transverse to the structure, 90(clockwise in map view from the Longitudinal component (It is preferable to do as above, but with Sensor.RelativeAzimuth.Value_dbl = 90 deg;)

	-900 or "AntiShortAxis"
	Transverse to the structure, 90(clockwise in map view from the AntiLongitudinal component.

	

	"H1"
	Horizontal sensor, azimuth unknown (In these two cases, it is preferable to use Sensor.Azimuth.ValueError_dbl = Inf deg; or

Array.Azimuth.ValueError_dbl = Inf deg;)

	"H2"
	Horizontal sensor, azimuth unknown

	

	"Other"
	Some other orientation (describe in Sensor.Comments_txt) (It is possible to describe any orientation with azimuth and inclination, so it is preferable to use one of the means provided to do so numerically, as described above.)

NOTES:

*The direction specified is the direction of motion of the ground (or the structural element that the sensor is attached to) that corresponds to a positive value in the time series (or for film, of an upward motion of the trace).

**Definitions changed from v1.20 for clarity and to follow existing standards.

Table 3L. Data Series (Including Original): Time-Series or Spectrum Information (formerly Tables 8 and 12 in part)

DataSeries.AgencysIdentifier_txt XE "DataSeries.AgencysIdentifier_txt" = "<Agency's Identifier>";

|| REQUIRED

|| e.g., "ci14138080", "ak00039525", etc.

||

|| The record identification string used by the authoring Agency

|| to specify this specific DataSeries.

||

|| Not to be confused with ThisFile.DataSeriesCOSMOSidentifier_txt,

|| which is the COSMOS VDC’s unique identifier for the same

|| DataSeries, used in cross referencing with the GVDC.

||

|| This tag also is not to be confused with the identification

|| of the “owner” of this record: ThisFile.Preparation.Agency_txt.

||

|| DataSeries.AgencysIdentifier_txt identifies only the DataSeries

|| per se, from the viewpoint of the DataSeries’ creator.
DataSeries.TriggerNumber_int XE "DataSeries.TriggerNumber_int" = <value>;

|| Optional

|| DAU's trigger number or event counter.

|| Time stamps:

RawSeries.FirstSampleTime.DateTime_txt XE "RawSeries.FirstSampleTime.DateTime_txt" = "YYYY-MM-DD hh:mm:ss.sss[Z|[+|-]hh[:mm]]";

|| ISO DateTime (preferably to ms) of the first sample

|| Optional

|| in the original file.

DataSeries.FirstSampleTime.DateTime_txt XE "DataSeries.FirstSampleTime.DateTime_txt" = "YYYY-MM-DD hh:mm:ss.sss[Z|[+|-]hh[:mm]]";

|| ISO DateTime (preferably to ms) of the first sample in

|| REQUIRED

|| this file.

||

|| Note that this is the primary time stamp for the file.
DataSeries.FirstSampleTime.JulianDay_int XE "DataSeries.FirstSampleTime.JulianDay_int" = <value>;

|| Avoid

|| The “Julian Day” (more correctly, the “Cardinal Day”, the day

|| of the year from 1 to 366) that corresponds to "MM-DD" in

|| DataSeries.FirstSampleTime.DateTime_txt. This tag is provided

|| for backward compatibility — the cardinal day is easily computed

|| and therefore redundant. Note that there is no provision in our

|| version of the ISO DateTime for using a cardinal day.
|| Information related to time stamps:

RawSeries.FirstSampleTime.TimeError_dbl XE "RawSeries.FirstSampleTime.TimeError_dbl" = <value> s;

|| Recommended

|| Estimated or computed two-sigma of

|| RawSeries.FirstSampleTime.DateTime_txt.
RawSeries.FirstSampleTime.Source_txt XE "RawSeries.FirstSampleTime.Source_txt" = “<value>“;

|| CONDITIONAL

|| Table 3M; REQUIRED if RawSeries.FirstSampleTime.DateTime_txt

|| is present.

DataSeries.FirstSampleTime.Correction_dbl XE "DataSeries.FirstSampleTime.Correction_dbl" = <value> s;

|| CONDITIONAL

|| Correction applied to recorded first-sample time to

|| arrive at DataSeries.FirstSampleTime.DateTime_txt. The

|| sign of the correction is in the sense:

|| DataSeries.FirstSampleTime.DateTime_txt =

|| <1st-sample time on recorder's chronometer>

|| + DataSeries.FirstSampleTime.Correction_dbl

|| Thus, a slow recorder clock produces a positive correction.

DataSeries.FirstSampleTime.TimeError_dbl XE "DataSeries.FirstSampleTime.TimeError_dbl" = <value> s;

|| Recommended

|| Estimated or computed two-sigma of

|| DataSeries.FirstSampleTime.DateTime_txt.
DataSeries.FirstSampleTime.Source_txt XE "DataSeries.FirstSampleTime.Source_txt" = “<value>“;

|| REQUIRED

|| From Table 3M.

|| The following two tags relate to double-integration initial

|| conditions. Also see RawSeries.Mean_dbl, DataSeries.Mean_dbl,

|| Processing.InitialValue.Velocity_dbl and

|| Processing.InitialValue.Displacement_dbl.

DataSeries.Pad.FirstOfOriginal_int XE "DataSeries.Pad.FirstOfOriginal_int" = <value>;

|| CONDITIONAL

DataSeries.Pad.LastOfOriginal_int XE "DataSeries.Pad.LastOfOriginal_int" = <value>;

|| CONDITIONAL

|| Both are REQUIRED if the DataSeries retains padding on either or

|| both ends used in processing (as is recommended by Boore and Akkar,

|| Earthquake Eng. Struct. Dyn., 32, 1729–1748, 2003) and by us.

||

|| These are the (integer) indexes of first and last samples of

|| the unfiltered DataSeries (the first sample of the padded trace

|| contained in this CTF file being index 1).

||

|| For example, if 10 zeros were added to each end of a 100-point

|| original time series, then DataSeries.NumberOfSamples_int =

|| 120; (10 + 100 + 10), DataSeries.Pad.FirstOfOriginal_int = 11;

|| (10 + 1), and DataSeries.Pad.LastOfOriginal_int = 110; (10 + 100).

|| The same would apply if no padding was appended to the rear in this

|| example, except that the trace length would be smaller by 10.

|| However, if no padding is prefixed to the front, then

|| DataSeries.Pad.FirstOfOriginal_int = 1;.

|| Exactly ONE of the following four is REQUIRED to scale the ordinate. More

|| than one is allowed only in the case of DataSeries.SamplesPerSecond_dbl
|| and DataSeries.SampleInterval_dbl, which must be inverses of one another

|| if both are present.

DataSeries.SamplesPerSecond_dbl XE "DataSeries.SamplesPerSecond_dbl" = <value> Hz;

|| CONDITIONAL

|| Sampling rate of time series

DataSeries.SampleInterval_dbl XE "DataSeries.SampleInterval_dbl" = <value> s;

|| CONDITIONAL

|| Sampling interval of time series

DataSeries.FrequencyBin_dbl XE "DataSeries.FrequencyBin_dbl" = <value> Hz;

|| CONDITIONAL

|| Bin width of an evenly sampled spectrum.

DataSeries.UnevenSamplingUnits_txt XE "DataSeries.UnevenSamplingUnits_txt" = "units";

|| CONDITIONAL

|| In this case, there will be an additional (first) column in the

|| main data-series listing, with its units given here (typically

|| "s" or "Hz"). This column's format must be included in the

|| format declaration DataSeries.Format_txt described below.

|| Note that this arrangement implies that amplitude and power spectra when

|| they are given as a function of period must be declared as unevenly sampled:

|| DataSeries.UnevenSamplingUnits_txt = "s";. Similarly, response spectra

|| will nearly always be unevenly sampled in period space.
RawSeries.SamplesPerSecond_dbl XE "RawSeries.SamplesPerSecond_dbl" = <value> Hz;

|| Optional

|| Sampling rate of original time series, or ...

RawSeries.SampleInterval_dbl XE "RawSeries.SampleInterval_dbl" = <value> s;

|| Optional

|| ... sampling interval of original time series.

RawSeries.UnevenSamplingUnits_txt XE "RawSeries.UnevenSamplingUnits_txt" = "units";

|| Optional

|| In this case, there is no location for the RawSeries

|| ordinate in this file, so this tag/value pair serve

|| only to acknowledge the uneven sampling rate of the

|| source and to indicate the units in which that rate

|| is to be expressed. For example, in a record taken

|| from film, we might have

|| RawSeries.UnevenSamplingUnits_txt = "um";

DataSeries.Span_dbl XE "DataSeries.Span_dbl" = <value> [s | Hz];

|| Optional

|| The time duration or bandwidth of the whole DataSeries.

||

|| Optional because it is easily computed from other values.

|| If given, therefore, it also must equal one of the following:

||

|| DataSeries.NumberOfSamples_int / DataSeries.SamplesPerSecond_dbl

|| DataSeries.NumberOfSamples_int * DataSeries.SampleInterval_dbl

|| DataSeries.NumberOfSamples_int * DataSeries.FrequencyBin_dbl

||

|| OR for DataSeries.UnevenSamplingUnits_txt the number of lines

|| between the DataSeries.Itself_txt = “START OF DATA”; and

|| DataSeries.Itself_txt = “END OF DATA”; lines (or the number

|| of lines there would be if the data were listed there).

RawSeries.Span_dbl XE "RawSeries.Span_dbl" = <value> s;

|| Optional

|| Same thing, but for the original record (which was a time

|| series, of course).

RawSeries.TriggerTime.DateTime_txt XE "RawSeries.TriggerTime.DateTime_txt" = "YYYY-MM-DD hh:mm:ss.sss[Z|[+|-]hh[:mm]]";

|| Optional

DataSeries.TriggerTime.DateTime_txt XE "DataSeries.TriggerTime.DateTime_txt" = "YYYY-MM-DD hh:mm:ss.sss[Z|[+|-]hh[:mm]]";

|| ISO DateTime (preferably to ms) of the TRIGGER time.

|| Optional

|| Not to be confused with the first-sample time.

RawSeries.TriggerTime.TimeError_dbl XE "RawSeries.TriggerTime.TimeError_dbl" = <value> s;

|| Optional

DataSeries.TriggerTime.TimeError_dbl XE "DataSeries.TriggerTime.TimeError_dbl" = <value> s;

|| Optional

|| Estimated or computed two-sigma

DataSeries.PreTriggerDuration_dbl XE "DataSeries.PreTriggerDuration_dbl" = <value> s;

|| Recommended

|| Pre-Event buffer length

DataSeries.PostDeTriggerDuration_dbl = <value> s;

|| Recommended

|| How long DAU records after de-triggering.

RawSeries.Peak.Value_dbl XE "RawSeries.Peak.Value_dbl" = <value> <units>;

|| Optional

|| Peak data value in the original record.

RawSeries.Peak.Place_dbl XE "RawSeries.Peak.Place_dbl" = <value> [s | Hz];

|| CONDITIONAL

|| Time, in seconds since first sample, of RawSeries.Peak.Value_dbl.

|| REQUIRED if RawSeries.Peak.Value_dbl is present. If the peak is

|| at the Nth point, this value is N * <sampling rate> seconds.

|| Generally there will be only one peak in a RawSeries and most

|| often it will be a peak acceleration.

DataSeries.Peak[(n)].Value_dbl XE "DataSeries.Peak.Value_dbl" = <value> <units>;

|| Recommended

|| Peak data value in this (typically processed) record.

|| This may be a PGA, a PGV, a maximum Sa, etc. depending

|| on what type of DataSeries this is.

||

|| In the case of response spectra, this is necessarily an

|| array, DataSeries.Peak(n).Value_dbl, of length equal to

|| the size of DataSeries.ResponseSpectrumDamping(n)_dbl

|| (that is, one peak value per spectrum, per damping).

|| Use of subscripting, Peak(n), is restricted to that

|| instance, to headers of response spectra.

DataSeries.Peak[(n)].Place_dbl XE "DataSeries.Peak.Place_dbl" = <value> [s | Hz];

|| CONDITIONAL

|| Either time, in seconds since first sample (for a PGA, PGV,

|| etc.) or the period or frequency of the spectral maximum (for

|| Fourier or response spectra) of the DataSeries.Peak(n).Value_dbl

|| values (and in the same order). Thus, if the peak occurs at

|| the Nth point, this value is N * <sampling rate> for time

|| series or (N – 1) * <bin width> (the zero-frequency bin

|| being N=1) for evenly binned spectra. For unevenly sampled

|| spectra, it simply corresponds to the particular spectral

|| line, whatever it happens to be.

DataSeries.Peak[(n)].ResponseSpectrumPeakTime_dbl XE "DataSeries.Peak.ResponseSpectrumPeakTime_dbl" = <value> s;

|| CONDITIONAL

|| If and only if DataSeries.Peak(n).Value_dbl is a response

|| spectrum, then also record the TIME in the original time

|| series (seconds since first sample) at which this spectral

|| maximum is encountered. This tag will also be an array

|| of length (n) equal to the size of

|| DataSeries.ResponseSpectrumDamping(n)_dbl.

||

|| DataSeries.Peak(n).Place_dbl and/or

|| DataSeries.Peak(n).ResponseSpectrumPeakTime_dbl are

|| REQUIRED if DataSeries.Peak(n).Value_dbl is present (both

|| must be given if the DataSeries is a response spectrum,

|| otherwise only the former).
RawSeries.FilmDigitizer.Ystep_dbl XE "RawSeries.FilmDigitizer.Ystep_dbl" = <value> um;

|| CONDITIONAL

RawSeries.FilmDigitizer.Tstep_dbl XE "RawSeries.FilmDigitizer.Tstep_dbl" = <value> um;

|| CONDITIONAL

RawSeries.FilmDigitizer.Tmean_dbl XE "RawSeries.FilmDigitizer.Tmean_dbl" = <value> [s | um];

|| Optional

RawSeries.FilmDigitizer.Tsigma_dbl XE "RawSeries.FilmDigitizer.Tsigma_dbl" = <value> [s | um];

|| Optional

RawSeries.FilmDigitizer.Tminimum_dbl XE "RawSeries.FilmDigitizer.Tminimum_dbl" = <value> [s | um];

|| Optional

RawSeries.FilmDigitizer.Tmaximum_dbl XE "RawSeries.FilmDigitizer.Tmaximum_dbl" = <value> [s | um];

|| Optional

|| If this record derives from a film recording, these tags

|| are the sizes of the digitizer X- (time) and Y-steps

|| (amplitude), and statistics pertaining to them, used in

|| digitizing that film record.

||

|| CONDITIONALs are REQUIRED for film-derived records.

DataSeries.ResponseSpectrumDamping(n)_dbl XE "DataSeries.ResponseSpectrumDamping(n)_dbl" = <value>;

|| CONDITIONAL

|| An array as large as needed (and in the same order as the

|| columns in the main DataSeries listing), that gives the

|| values of response-spectral damping used whenever the main

|| data sequence is Sa, Sv, Sd, or PSV. Values are in fraction

|| of critical, not percent. In the main DataSeries listing,

|| there is a column for each of these values of damping, in

|| exactly the same order as the damping values given here.

|| (There is also always an additional column on the left

|| giving periods since it is nearly always the case that

|| the sampling frequencies/periods are unevenly spaced,

|| often approximately logarithmic in period but rarely

|| precisely even by this pattern).

||

|| REQUIRED if the DataSeries are response spectra.

|| Selected linear Sa values also may be given for time series (recommended

|| periods are 0.2, 0.3, 1.0 and 3.0 s). Typically included when the DataSeries
|| is the processed time series and used for ShakeMap and other matters.

||

|| We note that this is a very incomplete set of response-spectral tag names,

|| and that one might include Sd, Sv, PSA, and PSV in both linear and nonlinear

|| versions.

DataSeries.Sa[(n)].Period_dbl XE "DataSeries.Sa.Period_dbl" = <value> s;

|| CONDITIONAL

DataSeries.Sa[(n)].StructureDamping_dbl XE "DataSeries.Sa.StructureDamping_dbl" = <value>;

|| CONDITIONAL

DataSeries.Sa[(n)].Value_dbl XE "DataSeries.Sa.Value_dbl" = <value> cm/s/s;

|| CONDITIONAL

|| Period, damping fraction, and response spectral acceleration

|| value sets. If any one is present for a given array index,

|| (n), all three are REQUIRED.

DataSeries.Sv[(n)].Period_dbl XE "DataSeries.Sv.Period_dbl" = <value> s;

|| CONDITIONAL

DataSeries.Sv[(n)].StructureDamping_dbl XE "DataSeries.Sv.StructureDamping_dbl" = <value>;

|| CONDITIONAL

DataSeries.Sv[(n)].Value_dbl XE "DataSeries.Sv.Value_dbl" = <value> cm/s/s;

|| CONDITIONAL

DataSeries.Sd[(n)].Period_dbl XE "DataSeries.Sd.Period_dbl" = <value> s;

|| CONDITIONAL

DataSeries.Sd[(n)].StructureDamping_dbl XE "DataSeries.Sd.StructureDamping_dbl" = <value>;

|| CONDITIONAL

DataSeries.Sd[(n)].Value_dbl XE "DataSeries.Sd.Value_dbl" = <value> cm/s/s;

|| CONDITIONAL

|| Equivalently for response spectral velocity and displacement.

RawSeries.RMS_dbl XE "RawSeries.RMS_dbl" = <value> <units>;

|| Optional

|| RMS of original time series

DataSeries.RMS_dbl XE "DataSeries.RMS_dbl" = <value> <units>;

|| Optional

|| RMS of this time series

DataSeries.CAV_dbl XE "DataSeries.CAV_dbl" = <value> [m/s | cm/s];

|| Optional

|| Cumulative absolute velocity of this time series

DataSeries.SI_dbl XE "DataSeries.SI_dbl" = <value> [m | cm];

|| Optional

|| Housner Intensity (SI) of this time series

DataSeries.AriasIntensity_dbl XE "DataSeries.AriasIntensity_dbl" = <value> [m/s | cm/s];

|| Optional

|| Arias Intensity of this time series

DataSeries.ObservationalMMI[(n)]_int XE "DataSeries.ObservationalMMI_int" = <value; 1-12>;

|| Optional

|| MMI of this time series, determined by human

|| inspection of effects at the site. (There may be

|| more than one observer with differing opinions.)

DataSeries.InstrumentalMMI_dbl XE "DataSeries.InstrumentalMMI_dbl" = <value, 0.0-12.0>;

|| Optional

|| Instrumentally estimated MMI from this time series

|| (may, therefore, be non-integer). Generally saturates

|| at about 10.

DataSeries.Duration.Over5PctG_dbl XE "DataSeries.Duration.Over5PctG_dbl" = <value> s;

|| Optional

|| Duration of shaking over 5% of g_standard (980.665 cm/s/s),

|| which is 49.03 cm/s/s, of this time series

DataSeries.Duration.AriasInterval_dbl XE "DataSeries.Duration.AriasInterval_dbl" = <value> s;

|| Optional

|| Interval to accumulate from 5% to 95% of the final Arias

|| Intensity for this time series.

DataSeries.Pick[(n)].PDateTime_txt XE "DataSeries.Pick.PDateTime_txt" = "YYYY-MM-DD hh:mm:ss.ss[s][Z|[+|-]hh[:mm]]";

|| P-Wave arrival time Pick(s) at this Point (there may be

|| Recommended

|| more than one opinion on the time of the pick).
DataSeries.Pick[(n)].SDateTime_txt XE "DataSeries.Pick.SDateTime_txt" = "YYYY-MM-DD hh:mm:ss.ss[s][Z|[+|-]hh[:mm]]";

|| S-Wave arrival time Pick(s) at this Point (there may be

|| Recommended

|| more than one opinion on the time of the pick)

DataSeries.Pick[(n)].Agency_txt XE "DataSeries.Pick.Agency_txt" = "<Table 3E>";

|| CONDITIONAL

|| REQUIRED if either DataSeries.Pick.PDateTime_txt or

|| DataSeries.Pick.SDateTime_txt is given, and is the group

|| or individual (Agency from Table 3E) that made the pick(s).

DataSeries.Pick[(n)].DateTime_txt XE "DataSeries.Pick.DateTime_txt" = "YYYY-MM-DD[hh:mm:ss [Z|[+|-]hh[:mm]]]";

|| REQUIRED if either DataSeries.Pick.PDateTime_txt or

|| CONDITIONAL

|| DataSeries.Pick.SDateTime_txt is given, and is the date

|| ((time) on which the pick(s) were made (that is, the

|| pedigree, not the pick time itself) in order to allow

|| tracking of updates to the picks.

RawSeries.Comments_txt XE "DataSeries.Comments_txt" = "<Comments>";

|| Optional

|| Comments about the RawSeries not covered elsewhere.

DataSeries.Comments_txt XE "DataSeries.Comments_txt" = "<Comments>";

|| Optional

|| Comments about the DataSeries not covered elsewhere.

||

|| Any Comments about the DataSeries or RawSeries not otherwise

|| covered by defined DataSeries or RawSeries tags. If multiple

|| “lines” of text are needed, join them into a single text

|| string, with the line breaks indicated by the character

|| pair “\n”.

Table 3M. Recorder Timing Method (formerly Table 8)

|| These values are used for RawSeries.FirstSampleTime.Source_txt
|| and DataSeries.FirstSampleTime.Source_txt.
	Code
	DateTime reference source for this record

	"No Clock Present"
	No clock is present

	"Human-set Clock"
	Recorder's clock set by hand

	"Auxiliary, Continuous Clock"
	Auxiliary, continuous clock (e.g., a TCG)

	"Radio DateTime Pulse"
	Radio time signal on record (e.g., WWVB, WWVH)

	"Radio-tracking Clock"
	Precision chronometer that tracks a radio signal (WWVB, etc.)

	"GPS-tracking Clock"
	Precision chronometer that tracks GPS signals

	"Other DateTime Source"
	Unspecified or unknown time source

	
	

	"_____________________"
	USER-EXTENSIBLE LIST (use established, terse, clear, English names)

Table 3N. Processing Information (formerly Tables 8 and 12 in part)

Processing.DateTime_txt XE "Processing.DateTime_txt" = "YYYY-MM-DD hh:mm:ss.sss[Z|[+|-]hh[:mm]]";

|| CONDITIONAL

|| Authoritative ISO DateTime when the record was processed

|| to its final form.

||

|| This tag-value pair is REQUIRED if this is not a RawSeries

|| (thus, nearly always).

||

|| Note that Processing.DateTime_txt identifies the originating-

|| Agency’s authoritative creation DateTime for the DataSeries in

|| this file, while ThisFile.Preparation.DateTime_txt is the DateTime

|| when this COSMOS tagged-format file is created (often by means

|| of translation from the originating-Agency’s format).

||

|| Clearly, therefore, Processing.DateTime_txt must not be later

|| than ThisFile.Preparation.DateTime_txt, but it is possible for

|| these two DateTimes to be the same of the originating-Agency

|| directly creates this tagged-format file.

Processing.Agency_txt XE "Processing.Agency_txt" = “<value>“;

|| CONDITIONAL

|| Processing organization or individual (Agency

|| from Table 3E). If said Agency also provides

|| the file in CTF, this value likely will be the

|| same as ThisFile.Preparation.Agency_txt.

||

|| REQUIRED if Processing.DateTime_txt is present (which

|| is nearly always).

|| Filter information is REQUIRED if one or more filters are applied during processing.

|| Furthermore, if any Processing.Filter tag is given, a “sufficiently descriptive” set

|| of Processing.Filter tags must be included (enough that another practitioner can

|| understand what was done and its affect on the DataSeries).

||

|| If there is more than one filter, subscript them as Processing.Filter(m).…, but if

|| only one Processing.Filter is used, the subscript may (should) be omitted.

||
|| Note that there are three methods for describing a filter — poles and zeros

|| (PoleZero), Polynomial equivalents of those poles and zeros, or much less complete,

|| general parameters (OtherDescription) like corner frequencies and roll-off rates.

||

|| The following group of seven tags apply to all three types of description:

Processing.Filter[(m)].Comments_txt XE "Processing.Filter.Comments_txt" = "<Comments>";

|| CONDITIONAL

|| This tag is REQUIRED if an unusual filtering schema

|| was applied or if any unusual issues were encountered.

|| It is Optional if you simply have other Comments.

||

|| If multiple “lines” of text are needed, join them into

|| a single text string, with the line breaks indicated by

|| the character pair “\n”.

Processing.Filter[(m)].Mode_txt XE "Processing.Filter.Mode_txt" = ["Digital" | "Analog"];

|| CONDITIONAL

|| Whether the filter is digitally computed or

|| is an analog (usually electronic) filter.

|| If not given, “Digital” is assumed.

Processing.Filter[(m)].Domain_txt XE "Processing.Filter.Domain_txt" = ["Time" | "Frequency"];

|| CONDITIONAL

|| The domain of digital-filter computation.

Processing.Filter[(m)].Causality_txt XE "Processing.Filter.Causality_txt" = ["Causal" | "Acausal" | "Zero Phase"];

|| Is the filter causal or acausal? “Zero Phase” is, of

|| CONDITIONAL

|| course, a particular type of acausal filter, commonly

|| an FIR or else an IIR filter run both directions across

|| a time series (the latter not recommended because it

|| produces “soft shouldered” filters that generally

|| are –6 dB at their corners).

Processing.Filter[(m)].FilterName_txt XE "Processing.Filter.FilterName_txt" = "<value from Table 3O>";

|| CONDITIONAL

|| From upper part of Table 3O indicating the common name

|| of the filter (e.g., “Butterworth”). But for pole/zero or

|| polynomial descriptions, must be one of the following:

|| "S-plane Poles/Zeros"

|| "z-plane Poles/Zeros"

|| “S-plane Polynomial”

|| “z-plane Polynomial”

|| (cf., Table 3O).

Processing.Filter[(m)].FrequencyBandType_txt XE "Processing.Filter.FrequencyBandType_txt" = "<value from Table 3O>";

|| CONDITIONAL

Processing.Filter[(m)].PeriodBandType_txt XE "Processing.Filter.PeriodBandType_txt" = "<value from Table 3O>";

|| CONDITIONAL

|| From the lower part of Table 3O indicating the

|| filter bandpass character (e.g., “High Pass”).

||

|| Most scientists are likely to use FrequencyBandType

|| but many structural engineers may prefer to use

|| PeriodBandType. (This distinction between choices

|| of abscissa really only matters for “Low Pass” and

|| “High Pass”, of course.)

|| For a pole/zero description, only "S-plane Poles/Zeros" or "z-plane Poles/Zeros"

|| is allowed (in a manner analogous to ….TransferFunction.FilterName_txt).

||

|| Using poles and zeros, particularly Laplace (S-plane) || poles and zeros, is the
|| preferred method. Of course, excepting that one would better describe an FIR filter

|| by its z-plain polynomial coefficients for the numerator (its "taps").

||

|| If using poles and zeros, then the following four tags are REQUIRED, excepting

|| of course that either the Numerator or the Denominator may be omitted, in which

|| case that portion is assumed to be unity:

Processing.Filter[(m)].PoleZero.Numerator.NumberOfRoots_int XE "Processing.Filter.PoleZero.Numerator.NumberOfRoots_int" = <0, 1, 2, ...>;
|| CONDITIONAL

|| Number of zeros in the filter.

Processing.Filter[(m)].PoleZero.Denominator.NumberOfRoots_int XE "Processing.Filter.PoleZero.Denominator.NumberOfRoots_int" = <0, 1, 2, ...>;

|| Number of poles in the filter.

|| CONDITIONAL

Processing.Filter[(m)].PoleZero.Numerator.Root(n)_cpx XE "Processing.Filter.PoleZero.Numerator.Root(n)_cpx" = <real> <imaginary>;
|| CONDITIONAL

|| A complex zero. Repeat (n) exactly

|| Processing.Filter.PoleZero.NumberOfRoots_int times.

Processing.Filter[(m)].PoleZero.Denominator.Root(n)_cpx XE "Processing.Filter.PoleZero.Denominator.Root(n)_cpx" = <real> <imaginary>;
|| CONDITIONAL

|| A complex pole. You must repeat (n) exactly

|| Processing.Filter.PoleZero.NumberOfRoots_int times.

|| For a polynomial description, Processing.Filter.FilterName_txt may only take

|| the values "S-plane Polynomial” or “z-plane Polynomial” is allowed (in a manner

|| analogous to ….TransferFunction.FilterName_txt).

||

|| This is a close relative of pole/zero descriptions, being the enumeration

|| of polynomial coefficients for the numerator and denominator of a filter

|| transfer function. These may be in the Laplace- (S) or z-plane, as indicated

|| by Sensor.TransferFunction.FilterName_txt.

||

|| The order of the coefficients is (0 to m), that is ascending from the constant

|| to m=order+1. Zero value coefficients are required, if necessary, to create

|| a complete vector of (order+1) elements.

||

|| If either the Numerator or Denominator is omitted, the value of that polynomial

|| will be assumed equal to unity.
Processing.Filter[(m)].Polynomial.Numerator.NumberOfCoeff_int XE "Processing.Filter.Polynomial.Numerator.NumberOfCoeff_int" = <value>;
|| CONDITIONAL
Processing.Filter[(m)].Polynomial.Denominator.NumberOfCoeff_int XE "Processing.Filter.Polynomial.Denominator.NumberOfCoeff_int" = <value>;
|| CONDITIONAL
Processing.Filter[(m)].Polynomial.Numerator.Coefficient(n)_dbl XE "Processing.Filter.Polynomial.Numerator.Coefficient(n)_dbl" = <value>;
|| CONDITIONAL
Processing.Filter[(m)].Polynomial.Denominator.Coefficient(n)_dbl XE "Processing.Filter.Polynomial.Denominator.Coefficient(n)_dbl" = <value>;
|| CONDITIONAL
|| If not using neither poles and zeros nor polynomials, the following are another way

|| or ways of describing filters, albeit less completely. A sufficiently complete group

|| of these tags is REQUIRED if neither poles and zeroes nor polynomial coefficients

|| are given and a filter was used.

Processing.Filter[(m)].OtherDescription.Corner[(n)]_dbl XE "Processing.Filter.OtherDescription.Corner_dbl" = <value> [Hz | s];
|| CONDITIONAL

|| Filter corner (–3 db point(s)), in units of

|| either frequency or period (this unit must

|| match your choice of FrequencyBandType_txt

|| or PeriodBandType_txt). There may be either

|| one (low pass, high pass, notch), two (bandpass,

|| bandstop), or several (rare but possible for any

|| filter) Corners(m). The index (n) need only be

|| present when there are two or more corners in

|| the filter.

Processing.Filter[(m)].OtherDescription.Decay[(n)]_dbl XE "Processing.Filter.OtherDescription.Decay_dbl" = <value> dB/octave;
|| CONDITIONAL

|| Roll-off rate(s) beyond the one or several

|| Corners. The (m) must match that in

|| Processing.Filter(n).OtherDescription.Corner(m)_dbl when more

|| than one Corner (e.g., for bandpass filters).
Processing.Filter[(m)].OtherDescription.TransitionBandwidth_dbl XE "Processing.Filter.OtherDescription.TransitionBandwidth_dbl" = <value> Hz;
|| CONDITIONAL

Processing.Filter[(m)].OtherDescription.StopBandAttenuation_dbl XE "Processing.Filter.OtherDescription.StopBandAttenuation_dbl" = <value> dB;
|| CONDITIONAL

|| Needed for Ormsby filter, FIR brickwall filters,

|| and so forth.

Processing.Filter[(m)].OtherDescription.Length_dbl XE "Processing.Filter.OtherDescription.Length_dbl" = <value> s;

|| CONDITIONAL

|| Length of filter operator, even if symmetric, if doing

|| time domain filtering (e.g., FIR, IIR). For an FIR,

|| this value is often called the “number of taps” although

|| a few users define “taps” as <1 + ((Length – 1) / 2)>,

|| the least number of multiply-accumulate operations

|| required for a symmetric (zero phase) FIR filter.

Processing.Decimation[(m)].Initial_dbl XE "Processing.Decimation.Initial_dbl" = <old sample rate> Hz;

|| CONDITIONAL

Processing.Decimation[(m)].Final_dbl XE "Processing.Decimation.Final_dbl" = <new sample rate> Hz;

|| CONDITIONAL

Processing.Decimation[(m)].FilterIndex_int XE "Processing.Decimation.FilterIndex_int " = <index>;

|| Optional

|| Legacy data were sometimes decimated to reduce computation

|| times and storage requirements (back when computers were much

|| less capable).

||

|| The two CONDITIONAL tags are REQUIRED if this DataSeries was

|| decimated or up-sampled, with both values being samples per

|| second, the pair therefore implying the resampling factor.

||

|| If desired, users may employ Processing.Filter values to describe

|| the decimation filter(s) more completely. If you do this, make it

|| clear from corresponding Comments and FilterIndex which processing

|| filter is, in fact, the resampler (that is, it will be

|| Processing.Filter(Processing.Decimation.FilterIndex_int).

||

|| The index (m) can be used to describe multiple steps in

|| decimation or its inverse, up-sampling. For example, some

|| legacy CSMIP data first decimate by four then by an additional

|| amount for computing long-period results. This would be

|| described with (m), (1) being the initial decimation.

|| The following four tags relate to double-integration initial

|| conditions. Also see DataSeries.Pad.FirstOfOriginal_int and

|| DataSeries.Pad.LastOfOriginal_int.

RawSeries.Mean_dbl XE "RawSeries.Mean_dbl" = <value> <units>;

|| Recommended

|| Mean value removed to make the original time series

|| zero-mean.

DataSeries.Mean_dbl XE "DataSeries.Mean_dbl" = <value> <units>;

|| Recommended

|| Mean value of this time series

Processing.Report[(n)].Citation_txt XE "Processing.Report.Citation_txt" = “<citation>”;

|| Optional

Processing.Report[(n)].URL_txt XE "Processing.Report.URL_txt" = "<Web address>";

|| Optional

|| If there is/are report(s) available for this DataSeries,

|| provide a citation with one or both of these tags.

Processing.InitialValue.Velocity_dbl XE "Processing.InitialValue.Velocity_dbl" = <value> <units>;

|| Recommended

Processing.InitialValue.Displacement_dbl XE "Processing.InitialValue.Displacement_dbl" = <value> <units>;

|| Recommended

|| Often it is necessary to begin an integration from an

|| initial value other than zero in order to produce a trace

|| with the correct mean. This tag=value is the constant of

|| integration and corresponds, for example, to "remembering"

|| the acceleration baseline initial correction derived from

|| a preliminary velocity trace.

||

|| A more general description of baseline corrections (including

|| that an offset correction in velocity is a Dirac delta in

|| acceleration, an offset correction in displacement is the

|| derivative of a Dirac delta in acceleration, and so forth).

|| Since such delta functions are generally convolved with a

|| smoothing filter and higher-order corrections are also made

|| quite routinely, the most complete description of baseline

|| corrections requires a complete acceleration time series of

|| the same length and sampling rate as the DataSeries in this

|| CTF file. Therefore we provide, in Table 3B(b), the option

|| of naming another file of very similar filename “Acceleration

|| Correction Baseline”.

Processing.ConstantsUsed_txt XE "Processing.ConstantsUsed_txt" = ["Precise" | "Nominal" | "Poor"];

|| Recommended

|| Describes the accuracy of conversion and correction constants

|| used in correcting and processing the seismogram. The list of

|| possible values is from best to worst, with "Nominal" meaning

|| that up to a few percent total gain and phase error is possible

|| in the pass band and “Precise” meaning that no more than 1% error

|| is likely.

Processing.Problem[(m)].Status_txt XE "Processing.Problem.Status_txt" = ["None" | “Yes” | "Corrected" | "Not Corrected"];

|| If no issues with data processing are known to have existed
|| REQUIRED

|| at any time then "None" (that is "No Problems") is implied.

|| If problems with the DataSeries are known to be or to have

|| been present at any time, then you must include at least

|| one Processing.Problem.Comments(n)_txt tag explaining.

|| Such problems are, of course, either now “Corrected” or

|| “Not [yet] Corrected”.

||

|| The subscript (n) allows the listing of more than one

|| Problem but will often be only an implicit (1).

Processing.Problem[(m)].Comments[(n)]_txt XE "Processing.Problem.Comments_txt" = "Description";

|| CONDITIONAL

|| If Processing.Problem.Status_txt is anything other

|| than "None", then this tag is REQUIRED for each (n)

|| to describe the nature of the problem and indicate

|| its current disposition.

||

|| If multiple “lines” of text are required for a

|| particular (n) then concatenate them into a single

|| text string with the lines separated by the

|| character pair “\n”.

Processing.Comments_txt XE "Processing.Comments_txt" = "<Comments>";

|| Recommended

|| For general Comments about processing that are not

|| appropriate to Processing.Problem.Comments_txt

|| or Processing.SpecialProcessing_txt.

||

|| As above for multiple “lines” of text for any

|| particular (n).

Processing.BlueBookVolume_int XE "Processing.BlueBookVolume_int" = [0-3];

|| CONDITIONAL

Processing.Stage_txt XE "Processing.Stage_txt" = ["Raw" | "Preliminary" | "Final"];

|| CONDITIONAL

Processing.HumanReview_txt XE "Processing.HumanReview_txt" = ["None" | "Reviewed" | "Updated"];

|| REQUIRED

Processing.Instance_int XE "Processing.Instance_int" = <non-negative integer>;

|| REQUIRED

Processing.SpecialProcessing_txt XE "Processing.SpecialProcessing_txt" = "<Value>";

|| CONDITIONAL

|| One of the two tags Processing.BlueBookVolume_int or

|| Processing.Stage_txt is required to indicate the stage

|| of the processing. Furthermore, within each processing

|| stage, there may be one or more instances of the release

|| of a DataSeries, indicated by Processing.Instance_int.

|| The latter value will often be 1 and only 1, the first

|| and only such processing instance.

||

|| It is also required that the degree of human analysis

|| of the data (versus automated computer processing) be

|| indicated. If the data are, so far, only automatically

|| processed then set Processing.HumanReview_txt = "None";.

|| (This will often be the case with the initial release of

|| data from modern, digital systems.) At subsequent steps

|| in the processing scheme use the other values to indicate

|| that the data have received a preliminary review or that

|| they have been fully processed, subjected to full quality

|| control procedures. Legacy and older data generally are

|| predominantly human-processed and are therefore given

|| the value Processing.HumanReview_txt = "Updated"; in

|| most cases.

||

|| Processing.BlueBookVolume_int takes the values:

|| 0 = unprocessed data

|| 1 = converted and baseline-corrected ground motion

|| 2 = filtered acceleration, velocity, or displacement

|| 3 = spectral ordinates and response spectra

|| indicating an ordered sequence of processing steps.

||

|| Finally, if the DataSeries has been processed in a manner

|| that is not typical of the originating Agency, indicate this

|| fact by including the tag Processing.SpecialProcessing_txt

|| (now REQUIRED) and using its contents to describe what was

|| unusual about the processing.

--

Notes:

(1) Channel number and sensing direction are now in Table 3K(a).

(2) All geographic location information is now in tags defined in Table 3F.

Table 3O. Codes for Filter Types Used in Processing (formerly Table 12)

|| Use the upper part of this Table as values of Processing.Filter(n).FilterName_txt.

|| The first two values may also be used for Sensor.TransferFunction.FilterName_txt
|| or Sensor.TransferFunction.FilterName_txt. The lower part of this Table is for

|| Processing.Filter(n).FrequencyBandType_txt or Processing.Filter(n).PeriodBandType_txt.

||

|| Note that the causality of filters are indicated by the formal definitions of those

|| filters and by Processing.Filter.Causality_txt and ??? while Sensor transfer functions are

|| assumed to be causal.

	Code
	Any ….FilterName_txt

	"S-plane Poles/Zeros"
	A list of complex Laplace-plane poles and zeros follows

	"z-plane Poles/Zeros"
	A list of complex z-plane poles and zeros follows

	

	"S-plane Polynomial"
	A list of real Laplace-plane polynomial coefficients

	"z-plane Polynomial"
	A list of real z-plane polynomial coefficients

	(the following not allowed for pole-zero descriptions)

	"None"
	No filtering performed (just leave out the variables entirely)

	"Rectangular"
	Rectangular

	"Cosine Bell"
	Cosine Bell

	"Ormsby"
	Ormsby

	"Butterworth”
	Butterworth, single direction (state “Causal” or “Acausal” please)

	"Bessel"
	Bessel, single direction (state “Causal” or “Acausal” please)

	"IIR"
	Generalized time-domain IIR filter
	It is best to treat these as z-plane poles and zeros.

	"FIR"
	FIR (state filter’s causality)
	

	"_____________"
	USER-EXTENSIBLE LIST (use established, terse, clear, English names)

	Code
	Filter FrequencyBandType or PeriodBandType

	"High Pass"
	A high-pass filter, with respect to frequency or to period

	"Low Pass"
	A low-pass filter, with respect to frequency or to period

	“Bandpass”
	A band-pass filter

	“Bandstop”
	A band-stop filter

	“Notch”
	A notch filter

	“Deconvolution”
	A transfer-function deconvolution filter

	"_____________"
	USER-EXTENSIBLE LIST (use established, terse, clear, English names)

Table 3P. Relational Tags Involving Two Positions (moved from Table 3I)

EventPoint.EpicentralDistance.Value_dbl XE "EventPoint.EpicentralDistance.Value_dbl" = <value> km;

|| Optional

EventPoint.EpicentralDistance.ValueError_dbl XE "EventPoint.EpicentralDistance.ValueError_dbl" = <value> km;

|| Optional

|| Epicenter-to-Point distance and error.

EventPoint.ForeAzimuth.Value_dbl XE "EventPoint.ForeAzimuth.Value_dbl" = <value> deg;

|| Optional

EventPoint.ForeAzimuth.ValueError_dbl XE "EventPoint.ForeAzimuth.ValueError_dbl" = <value> deg;

|| Optional

|| Epicenter-to-Point Azimuth and error.

EventPoint.BackAzimuth.Value_dbl XE "EventPoint.BackAzimuth.Value_dbl" = <value> deg;

|| Optional

EventPoint.BackAzimuth.ValueError_dbl XE "EventPoint.BackAzimuth.ValueError_dbl" = <value> deg;

|| Optional

|| Point-to-Epicenter Azimuth and error.

EventPoint.Comments_txt XE "EventPoint.Comments_txt" = <value>;

|| Optional

|| Comments, including any needed identification

|| of which Event and Point are referenced here.

||

|| If multiple “lines” of text are required, then

|| concatenate them into a single text string with

|| the lines separated by the character pair “\n”.

PointRupture.ClosestDistance[(n)].Value_dbl XE "PointRupture.ClosestDistance.Value_dbl" = <value> km;

|| Optional

PointRupture.ClosestSurfaceDistance[(n)].Value_dbl XE "PointRupture.ClosestSurfaceDistance.Value_dbl" = <value> km;

|| Optional

PointRupture.ClosestDistance[(n)].ValueError_dbl XE "PointRupture.ClosestDistance.ValueError_dbl" = <value> km;

|| Optional

PointRupture.ClosestSurfaceDistance[(n)].ValueError_dbl XE "PointRupture.ClosestSurfaceDistance.ValueError_dbl" = <value> km;

|| Optional

|| Point-to-Fault-Rupture (and Point-to-Rupture-Surface-

|| Projection) closest distances (often used in attenuation-

|| relation calculations). Subscript (n) here refers to a

|| particular rupture model, as in

|| Event.FaultRupture(n).Segment(i).Latitude_dbl.

PointRupture.Comments_txt XE "PointRupture.Comments_txt" = <value>;

|| Optional

|| Comments, including any needed identification

|| of which Event and Point are referenced here.

||

|| If multiple “lines” of text are required, then

|| concatenate them into a single text string with

|| the lines separated by the character pair “\n”.

|| We note that there is no indication above of which Event.Hypocenter or

|| Event.FaultRupture and which Point are referenced by EventPoint and

|| PointRupture. Should there be several of these listed in the header,

|| these EventPoint and PointRupture values are assumed to reference

|| the most authoritative versions of Event and Point, unless otherwise
|| indicated in EventPoint.Comments_txt or PointRupture.Comments_txt.
|| We do not currently know of any more elegant solution to this

|| referencing issue. (Two-dimensional arrays are not supported and

|| double indexing is opaque in meaning, violating the “self evident

|| file” design goal.

Table 3Q. Private Tags

An Agency may (but should Avoid) defining internal-use tag-sets of the following format, Private tags, which, of course, may be followed by “||” comments. The Private tag definition is formally:

Private[(n)].TagName_txt XE "Private.TagName_txt" = “<TerseTagName>”;

|| CONDITIONAL
Private[(n)].DataType_txt XE "Private.DataType_txt" = [“_txt” | “_int” | “_dbl” | “_cpx”];
|| CONDITIONAL
Private[(n)].TextValue_txt XE "Private.TextValue_txt" = “<Value assigned to tag>”;

|| CONDITIONAL
Private[(n)].TextValueError_txt XE "Private.TextValueError_txt" = “<Value error assigned to tag>”;
|| Optional
Private[(n)].Units_txt XE "Private.Units_txt" = “<From Table 2>”;

|| CONDITIONAL
Private[(n)].Agency_txt XE "Private.Agency_txt" = “<Table 3E Code>”;

|| CONDITIONAL
Private[(n)].MeaningAndUse_txt XE "Private.MeaningAndUse_txt" = “<Tag meaning and use>”;

|| CONDITIONAL
where <TerseTagName> must be a self-evident descriptive phrase, in English. MeaningAndUse shall be added to define the meaning and use of the tag clearly, also in English. The goal is that any later user who is completely unfamiliar with your work must be able to understand your tag and what it is used for.

The “CONDITIONALs” mean that once a TagName is created, for any (n), all other elements must be present, including the DataType, data Units (NULL if unitless), and the individual or organization (Agency) creating that Private tag. Obviously, the Value to which this tag is set must be included too, noting that every Value shall be encoded as text, including numerical data. TextValueError need not be given.

“Avoid” means what it seems to — the Private tag class generally should not be necessary and will be hard for others to use, so try not to invoke it.

While we hope that we have anticipated all needs and provided appropriate tags already, such hopes are necessarily vain. Thus, Private tags may be used for quality control information, data not yet supported by the COSMOS format, specialized network data, and so forth, assuming that using some already-available Comments_txt instead is not an acceptable alternative.

On the positive side, this mechanism is one way in which new tags may be proposed to COSMOS, although a more formal proposal is preferred.

CTF parsers will treat all private tags as text when read for processing and they will be passed through unchanged, as viable tag sets, within the data files themselves. That is, DataType XE "VariableType" is advisory, suggesting how to parse the Value. (Of course, your own private parser may read them in and use them as particular types of values. Since the CTF source code will be available to all users, it should be a relatively simple programming job to modify parsers, output generators, and translators to read and write your private tags.)

--

Table 3R. DataSeries Tags Closely Associated with Table 4

DataSeries.NumberOfSamples_int XE "DataSeries.NumberOfSamples_int" = <number of data to follow>;

|| REQUIRED

|| Number of samples in time or bins in frequency, (regardless

|| of whether the interval between samples or frequency bins

|| is regular or not). The zero- and Nyquist-frequency bins

|| are both included in this count.

||

|| Note that for response spectra, this is the number of data

|| per damping value, not the total number of data.

||

|| Therefore, in all cases, DataSeries.NumberOfSamples_int

|| will equal the number of lines of data to be read in

|| between the DataSeries.Itself_txt = “START OF DATA”;

|| and DataSeries.Itself_txt = “END OF DATA”; lines when

|| the DataSeries listing is included in this file.

DataSeries.Units_txt XE "DataSeries.Units_txt" = "<units>";

|| REQUIRED

|| Units in which the data are given. Must conform to the

|| units in Table 3B for DataSeries.PhysicalParameter_txt.

|| These are the units in all or most of what follows (although

|| not in column one of irregularly sampled series, which are

|| given by DataSeries.UnevenSamplingUnits_txt, Table 3L).

DataSeries.Format_txt XE "DataSeries.Format_txt" = "<FORTRAN format specification>";

|| CONDITIONAL

|| REQUIRED unless the DataSeries is provided only in a binary

|| file by way of a URL. Still REQUIRED if the DataSeries is

|| only supplied as an ASCII file by way of a URL, and is then

|| the format of that remote ASCII file.

||

|| Exactly one datum per line only, either a single real value

|| or one real-imaginary pair separated by white space, except

|| for response spectra (multiple damping values) or of uneven

|| sampling (a leading column giving the ordinate also needed).

||

|| Authors are cautioned to provide enough text precision to

|| preserve the precision of the original recording, with no

|| conversion or round-off error. (They should therefore have

|| a mantissa at least as precise as the analog-to-digital

|| converter, or comparable to an IEEE double-precision).

|| For 24-bit records in cm/s/s, for example, try "F11.5".

|| For related complex spectra try "2E16.9".

||

|| Notes:

||

|| (1) In multicolumn data listings, it is essential that the

|| format you choose be broad enough to ensure that there will

|| always be at least one blank space between each value. This

|| rule is necessary to ensure the coexistence of older languages

|| like Fortran and newer ones like C and MatLab. That is, the

|| CTF specifies both column alignment and white-space separation

|| of numerical fields in the primary DataSeries listing.

|| (2) For uneven sampling (as with response spectra), there

|| shall be an additional column of values in front of the data

|| (representing the time, frequency, or period ordinate) with

|| the units declared by DataSeries.UnevenSamplingUnits_txt.

|| The format declared by DataSeries.Format_txt must include

|| this additional, first column.

||

|| (3) Response spectra will, in addition to that extra column,

|| have as many spectral values per line as there are damping

|| values in DataSeries.ResponseSpectrumDamping(n)_dbl, hence

|| "N+1" values per line. This diversity too must be fully

|| declared in DataSeries.Format_txt.

DataSeries.Remote.RealTimeSeriesURL_txt XE "DataSeries.Remote.RealTimeSeriesURL_txt" = "<Web address>";

|| CONDITIONAL

DataSeries.Remote.RealSpectrumURL_txt XE "DataSeries.Remote.RealSpectrumURL_txt" = "<Web address>";

|| CONDITIONAL

DataSeries.Remote.ComplexSpectrumURL_txt XE "DataSeries.Remote.ComplexSpectrumURL_txt" = "<Web address>";

|| CONDITIONAL

DataSeries.Remote.DataType_txt XE "DataSeries.Remote.DataType_txt" = ["IEEE_double" | “XDR_IEEE_double" | "ASCII"];

|| One of the first three is REQUIRED if (1) this is not a

|| CONDITIONAL

|| “DATALESS” file and (2) the DataSeries is not provided below,

|| in this file, between DataSeries.Itself_txt = "START OF DATA";

|| and DataSeries.Itself_txt = "END OF DATA";. Otherwise, these

|| tags are Optional and may be provided in addition to the local

|| DataSeries listing.

||

|| The forth tag, DataSeries.Remote.DataType_txt, is REQUIRED whenever

|| one of the first three is given. "IEEE_double" implies that the

|| data found at that URL will be in the local flavor of IEEE double

|| or complex double (whichever is implied by the first three tags),

|| “XDR_IEEE_double" indicates that the data are in the XDR” version

|| of those formats, and "ASCII" indicates that the data are in the

|| same format as the text that used between

|| DataSeries.Itself_txt = "START OF DATA"; and

|| DataSeries.Itself_txt = "END OF DATA";, described below.

|| There is currently no provision for differing ASCII formats

|| between this file and the remote file.

||

|| These tags give the URL (Web address) and the form of file

|| containing an “original” copy of the DataSeries.

||

|| XDR encoding of the IEEE binary arrays is strongly recommended

|| because XDR-binary format is portable between computers of

|| differing architectures and is easily translated between them

|| (subroutines exist for every architecture supporting NFS file

|| systems — which is all flavors of UNIX, thus every major

|| architecture available).

DataSeries.Remote.BytesToSkip_int XE "DataSeries.Remote.BytesToSkip_int" = <bytes>;

|| CONDITIONAL

DataSeries.Remote.LinesToSkip_int XE "DataSeries.Remote.LinesToSkip_int" = <lines>;

|| CONDITIONAL

|| How far to skip in past any header in that file (in bytes or

|| lines), since the goal is to use the common-format COSMOS

|| header given here above.

||

|| A sufficient set of the two tags is REQUIRED if the first

|| character of the file pointed to by the URL is not the first

|| character of the DataSeries. The usual choice is to use

|| BytesToSkip_int for binary files and LinesToSkip_int for

|| ASCII files. Both default to zero if not given.

DataSeries.Checksum_int XE "DataSeries.Checksum_int" = <value>;

|| Recommended

|| Optional checksum for DataSeries between

|| DataSeries.Itself_txt = "START OF DATA"; and

|| DataSeries.Itself_txt = "END OF DATA"; only. This checksum

|| is computed by summing all the mantissa and exponent digits,

|| if any, (first subtracting five from each digit), and also

|| including in the sum each sign, counting each positive sign

|| as +1 and each negative as -1 (both these, of course, without

|| first subtracting five) and counting each NaN as zero.

||

|| Note that this value must be recomputed each time any change

|| is made to the DataSeries or its format (the length of the

|| mantissa, the use or absence of an exponent, etc.).

--

Table 4. Time Series or Spectrum (that is, the DataSeries per se)

DataSeries.Itself_txt XE "DataSeries.Itself_txt" = ["START OF DATA" | "DATALESS"];

|| REQUIRED

|| REQUIRED unless the DataSeries is provided only by way

|| of a URL. That is, not required when not “DATALESS”

|| but only providing the DataSeries by way of a URL.

||

|| If the file is "DATALESS" — header only and containing neither

|| a DataSeries nor a URL — then this CTF file is intended for

|| use in the distribution of revised header information only

|| (much as with a “dataless SEED” file within the CISN, for

|| example). DataSeries.Itself_txt = "END OF DATA"; and the

|| time- or frequency-series are then omitted and the last tag

|| in the file is DataSeries.Itself_txt = "DATALESS";
|| The one or several columns of the DataSeries per se go here, to the exclusion
|| of all comments, including “||” style. Missing values shall be replaced by

|| "NaN" ("Not a Number") which parses in most systems into the equivalent IEEE

|| IEEE value "NaN". In rare systems “NaN” will have to be replaced by an

|| extremal value that is then announced to the user. Default NaN and NULL

|| values may be suggested to the parser with ThisFile.NullFloatValue_dbl or
|| ThisFile.NullIntValue_int.

||

|| The possible forms of DataSeries listings are:

||

|| (1) Regularly-sampled time series will form a single column:

||

amplitude
|| where time begins at DataSeries.FirstSampleTime.DateTime_txt and

|| increases by increments of 1 / DataSeries.SamplesPerSecond_dbl
|| or DataSeries.SampleInterval_dbl.

||

|| (2) Irregularly-sampled time series will form two columns:

||

time amplitude
|| where “time” is seconds from the declared time-of-first-

|| sample, DataSeries.FirstSampleTime.DateTime_txt, and the

|| value of the first element of the time array is zero.

||

|| (3) Regularly-binned spectra (e.g., FFT) form two columns:

||

real imaginary
|| where frequencies are taken to be equal-width bins with

|| the first centered at 0-Hz (DC) and proceeding to positive

|| frequency in steps of DataSeries.FrequencyBin_dbl. It is

|| not specified that the highest frequency be Nyquist.
||

|| (4) Irregularly-binned spectra including all spectra given

|| versus period form three columns:

||

[frequency | period] real imaginary
|| where frequencies or periods refer to bin centers and may

|| begin and end at any frequency/period.

||

|| (5) Response spectra (e.g., Sa) form two or more columns:

||

[frequency | period] amplitude(Damping 1) [amplitude(Damping 2) [...]]
|| where frequencies or periods, of course, refer to resonator

|| natural frequencies and one or the response spectral amplitudes

|| must be given, one for each damping value given in the array

|| DataSeries.ResponseSpectrumDamping(n)_dbl.

|| This DataSeries listing begins immediately after the

|| DataSeries.Itself_txt = "START OF DATA"; tag, and the subsequent

|| DataSeries.NumberOfSamples_int lines must contain exactly and only

|| the primary DataSeries, in correct format, unbroken, and in correct

|| order (earliest to latest; lowest-frequency or -period to highest).

|| Only the tag DataSeries.Itself_txt = "END OF DATA"; (and its included

|| and subsequent comment lines) may follow the data listing. “||” and

|| all other comments are forbidden, notwithstanding that you see the

|| former here, explaining the format.

DataSeries.Itself_txt XE "DataSeries.Itself_txt" = "END OF DATA";

|| CONDITIONAL

|| REQUIRED when DataSeries.Itself_txt = "START OF DATA"; is given.

||

|| IMMEDIATELY follows last line of data.

--

Index of Tags

A
Array.Affiliate_txt
43

Array.Agency_txt
42

Array.Azimuth.Value_dbl
83

Array.Azimuth.ValueError_dbl
83

Array.EarthGravity_dbl
43

Array.Identifier_txt
42

Array.Location.Agency_txt
48

Array.Location.DateTime_txt
48

Array.Location.Elevation_dbl
47

Array.Location.HorizontalDatum_txt
48

Array.Location.Latitude_dbl
47

Array.Location.Longitude_dbl
47

Array.Location.VerticalDatum_txt
48

Array.Operator_txt
43

Array.Owner_txt
43

Array.TotalChannels_int
48

Array.TotalRecorders_int
48

C
ClassName
5, 7

D
DataSeries.AgencysIdentifier_txt
92

DataSeries.AriasIntensity_dbl
99

DataSeries.Calibration.InputAmplitude_dbl
35

DataSeries.Calibration.InputPeriod_dbl
35

DataSeries.Calibration.InputType_txt
35

DataSeries.Calibration.InputURL_txt
35

DataSeries.Cause_txt
34

DataSeries.CAV_dbl
99

DataSeries.Checksum_int
118

DataSeries.Comments_txt
100

DataSeries.Duration.AriasInterval_dbl
99

DataSeries.Duration.Over5PctG_dbl
99

DataSeries.FirstSampleTime.Correction_dbl
93

DataSeries.FirstSampleTime.DateTime_txt
92

DataSeries.FirstSampleTime.JulianDay_int
92

DataSeries.FirstSampleTime.Source_txt
93

DataSeries.FirstSampleTime.TimeError_dbl
93

DataSeries.Format_txt
116

DataSeries.FrequencyBin_dbl
94

DataSeries.InstrumentalMMI_dbl
99

DataSeries.Itself_txt
119, 121

DataSeries.Mean_dbl
106

DataSeries.NonLinearComputation.Description_txt
31

DataSeries.NonLinearComputation.URL_txt
31

DataSeries.NumberOfSamples_int
115

DataSeries.ObservationalMMI_int
99

DataSeries.Pad.FirstOfOriginal_int
93

DataSeries.Pad.LastOfOriginal_int
93

DataSeries.Peak.Place_dbl
97

DataSeries.Peak.ResponseSpectrumPeakTime_dbl
97

DataSeries.Peak.Value_dbl
96

DataSeries.PhysicalParameter_txt
31

DataSeries.Pick.Agency_txt
100

DataSeries.Pick.DateTime_txt
100

DataSeries.Pick.PDateTime_txt
100

DataSeries.Pick.SDateTime_txt
100

DataSeries.PreTriggerDuration_dbl
96

DataSeries.Remote.BytesToSkip_int
118

DataSeries.Remote.ComplexSpectrumURL_txt
117

DataSeries.Remote.DataType_txt
117

DataSeries.Remote.LinesToSkip_int
118

DataSeries.Remote.RealSpectrumURL_txt
117

DataSeries.Remote.RealTimeSeriesURL_txt
117

DataSeries.ResponseSpectrumDamping(n)_dbl
98

DataSeries.RMS_dbl
99

DataSeries.Sa.Period_dbl
98

DataSeries.Sa.StructureDamping_dbl
98

DataSeries.Sa.Value_dbl
98

DataSeries.SampleInterval_dbl
94

DataSeries.SamplesPerSecond_dbl
94

DataSeries.Sd.Period_dbl
98

DataSeries.Sd.StructureDamping_dbl
98

DataSeries.Sd.Value_dbl
98

DataSeries.SI_dbl
99

DataSeries.Span_dbl
95

DataSeries.Sv.Period_dbl
98

DataSeries.Sv.StructureDamping_dbl
98

DataSeries.Sv.Value_dbl
98

DataSeries.TriggerNumber_int
92

DataSeries.TriggerTime.DateTime_txt
95

DataSeries.TriggerTime.TimeError_dbl
96

DataSeries.UnevenSamplingUnits_txt
94

DataSeries.Units_txt
115

DAU.AntiAliasFilter.Corner_dbl
75

DAU.AntiAliasFilter.Decay_dbl
75

DAU.ChannelGain_dbl
74

DAU.Comments_txt
77

DAU.CompressionUsed.Citation_txt
77

DAU.CompressionUsed.Type_txt
77

DAU.CountSize_dbl
76

DAU.DynamicRange_dbl
76

DAU.EffectiveBits_dbl
77

DAU.FullScale_dbl
76

DAU.Manufacturer_txt
74

DAU.Model_txt
74

DAU.SerialNumber_txt
74

DAU.StorageMedium_txt
74

DAU.TotalChannels_int
74

DAU.TotalChannelsRecorded_int
74

DAU.TransferFunction.Causality_txt
75

DAU.TransferFunction.FilterName_txt
75

DAU.TransferFunction.PoleZero.Denominator.NumberOfRoots_int
76

DAU.TransferFunction.PoleZero.Denominator.Root(m)_cpx
76

DAU.TransferFunction.PoleZero.Numerator.NumberOfRoots_int
76

DAU.TransferFunction.PoleZero.Numerator.Root(m)_cpx
76

DAU.TransferFunction.Polynomial.Denominator.Coefficient(m)_dbl
76

DAU.TransferFunction.Polynomial.Denominator.NumberOfCoeff_int
76

DAU.TransferFunction.Polynomial.Numerator.Coefficient(m)_dbl
76

DAU.TransferFunction.Polynomial.Numerator.NumberOfCoeff_int
76

DAU.WordLength_int
76

E
Event.FaultRupture.Agency_txt
72

Event.FaultRupture.DateTime_txt
72

Event.FaultRupture.Segment(i).Depth_dbl
72

Event.FaultRupture.Segment(i).Dip_dbl
72

Event.FaultRupture.Segment(i).Latitude_dbl
72

Event.FaultRupture.Segment(i).Longitude_dbl
72

Event.FaultRupture.Segment(i).Rake_dbl
72

Event.FaultRupture.Segment(i).Strike_dbl
72

Event.FocalSolution.Agency_txt
71

Event.FocalSolution.Comments_txt
71

Event.FocalSolution.DateTime_txt
71

Event.FocalSolution.Dip_dbl
71

Event.FocalSolution.Rake_dbl
71

Event.FocalSolution.Strike_dbl
71

Event.Hypocenter.Agency_txt
67

Event.Hypocenter.Comments_txt
68

Event.Hypocenter.DateTime_txt
67

Event.Hypocenter.Depth_dbl
67

Event.Hypocenter.HorizontalDatum_txt
68

Event.Hypocenter.HorizontalError_dbl
68

Event.Hypocenter.Identifier_txt
67

Event.Hypocenter.Latitude_dbl
67

Event.Hypocenter.Longitude_dbl
67

Event.Hypocenter.OriginTime.DateTime_txt
67

Event.Hypocenter.OriginTime.TimeError_dbl
67

Event.Hypocenter.VerticalDatum_txt
68

Event.Hypocenter.VerticalError_dbl
68

Event.Magnitude.Agency_txt
68

Event.Magnitude.Comments_txt
68

Event.Magnitude.DateTime_txt
68

Event.Magnitude.Type_txt
68

Event.Magnitude.URL_txt
68

Event.Magnitude.Value_dbl
68

Event.Magnitude.ValueError_dbl
68

Event.Moment_dbl
70

Event.MomentTensor.Agency_txt
70

Event.MomentTensor.Comments_txt
71

Event.MomentTensor.CoordinateSystem_txt
70

Event.MomentTensor.DateTime_txt
70

Event.MomentTensor.M(i)_dbl
70

Event.MomentTensor.URL_txt
70

Event.ShakeMap.Agency_txt
72

Event.ShakeMap.Comments_txt
72

Event.ShakeMap.DateTime_txt
72

Event.ShakeMap.URL_txt
72

EventPoint.BackAzimuth.Value_dbl
112

EventPoint.BackAzimuth.ValueError_dbl
112

EventPoint.Comments_txt
112

EventPoint.EpicentralDistance.Value_dbl
112

EventPoint.EpicentralDistance.ValueError_dbl
112

EventPoint.ForeAzimuth.Value_dbl
112

EventPoint.ForeAzimuth.ValueError_dbl
112

P
Point.Bridge.AbutmentType_txt
57

Point.Bridge.ColumnsPerBent_txt
57

Point.Bridge.Description_txt
57

Point.Bridge.NumberOfSpans_txt
57

Point.Bridge.SpanContinuity_txt
57

Point.Bridge.SubstructureMaterial_txt
57

Point.Bridge.SuperstructureConfiguration_txt
57

Point.Building.Height_txt
56

Point.Building.NumberOfStories.AboveGrade_int
56

Point.Building.NumberOfStories.BelowGrade_int
56

Point.Building.StructuralSystem_txt
56

Point.Dam.Description_txt
58

Point.DeploymentDescription_txt
55

Point.Location.Agency_txt
48

Point.Location.DateTime_txt
48

Point.Location.EastOffset_dbl
48

Point.Location.Elevation_dbl
47

Point.Location.ElevationOffset_dbl
48

Point.Location.HorizontalDatum_txt
47

Point.Location.Latitude_dbl
47

Point.Location.Longitude_dbl
47

Point.Location.NorthOffset_dbl
48

Point.Location.VerticalDatum_txt
47

Point.Name.Address_txt
39

Point.Name.Agency_txt
37

Point.Name.DateTime_txt
37

Point.Name.Description_txt
38

Point.Name.ExpandedSNCL_txt
37

Point.Name.Index_txt
38

Point.Name.ShortName_txt
38

Point.Name.SNCL_txt
37

Point.Site.Citation_txt
52

Point.Site.Code.Agency_txt
51

Point.Site.Code.Citation_txt
51

Point.Site.Code.DateTime_txt
51

Point.Site.Code.TextValue_txt
51

Point.Site.Code.URL_txt
51

Point.Site.Geology_txt
52

Point.Site.GeotechnicalFeature.Agency_txt
53

Point.Site.GeotechnicalFeature.Distance_dbl
53

Point.Site.GeotechnicalFeature.Distributor_txt
53

Point.Site.GeotechnicalFeature.Identifier_txt
53

Point.Site.GeotechnicalFeature.Type_txt
53

Point.Site.GeotechnicalFeature.URL_txt
53

Point.Site.Other.Agency_txt
50

Point.Site.Other.DateTime_txt
50

Point.Site.Other.Z1000_dbl
50

Point.Site.Other.Z1500_dbl
50

Point.Site.URL_txt
52

Point.Site.Vs.Depth_dbl
50

Point.Site.Vs.Velocity_dbl
50

Point.Structure.Description_txt
55

Point.Structure.HAZUS.BuildingCode_txt
55

Point.Structure.HAZUS.OccupancyCode_txt
55

Point.StructureInfluence_txt
54

Point.StructurePedigree.DateTime_txt
55

Point.StructurePedigree.DesignCodeUsed_txt
55

Point.StructurePedigree.TimeError_dbl
55

PointRupture.ClosestDistance.Value_dbl
113

PointRupture.ClosestDistance.ValueError_dbl
113

PointRupture.ClosestSurfaceDistance.Value_dbl
113

PointRupture.ClosestSurfaceDistance.ValueError_dbl
113

PointRupture.Comments_txt
113

Private.Agency_txt
114

Private.DataType_txt
114

Private.MeaningAndUse_txt
114

Private.TagName_txt
114

Private.TextValue_txt
114

Private.TextValueError_txt
114

Private.Units_txt
114

Processing.Agency_txt
101

Processing.BlueBookVolume_int
109

Processing.Comments_txt
108

Processing.ConstantsUsed_txt
107

Processing.DateTime_txt
101

Processing.Decimation.FilterIndex_int
106

Processing.Decimation.Final_dbl
106

Processing.Decimation.Initial_dbl
106

Processing.Filter.Causality_txt
102

Processing.Filter.Comments_txt
102

Processing.Filter.Domain_txt
102

Processing.Filter.FilterName_txt
103

Processing.Filter.FrequencyBandType_txt
103

Processing.Filter.Mode_txt
102

Processing.Filter.OtherDescription.Corner_dbl
105

Processing.Filter.OtherDescription.Decay_dbl
105

Processing.Filter.OtherDescription.Length_dbl
105

Processing.Filter.OtherDescription.StopBandAttenuation_dbl
105

Processing.Filter.OtherDescription.TransitionBandwidth_dbl
105

Processing.Filter.PeriodBandType_txt
103

Processing.Filter.PoleZero.Denominator.NumberOfRoots_int
104

Processing.Filter.PoleZero.Denominator.Root(n)_cpx
104

Processing.Filter.PoleZero.Numerator.NumberOfRoots_int
104

Processing.Filter.PoleZero.Numerator.Root(n)_cpx
104

Processing.Filter.Polynomial.Denominator.Coefficient(n)_dbl
104

Processing.Filter.Polynomial.Denominator.NumberOfCoeff_int
104

Processing.Filter.Polynomial.Numerator.Coefficient(n)_dbl
104

Processing.Filter.Polynomial.Numerator.NumberOfCoeff_int
104

Processing.HumanReview_txt
109

Processing.InitialValue.Displacement_dbl
107

Processing.InitialValue.Velocity_dbl
107

Processing.Instance_int
109

Processing.Problem.Comments_txt
108

Processing.Problem.Status_txt
108

Processing.Report.Citation_txt
106

Processing.Report.URL_txt
106

Processing.SpecialProcessing_txt
109

Processing.Stage_txt
109

R
RawSeries.AccelerationsConversion_txt
43

RawSeries.AccelerationsWere_txt
43

RawSeries.FilmDigitizer.Tmaximum_dbl
97

RawSeries.FilmDigitizer.Tmean_dbl
97

RawSeries.FilmDigitizer.Tminimum_dbl
97

RawSeries.FilmDigitizer.Tsigma_dbl
97

RawSeries.FilmDigitizer.Tstep_dbl
97

RawSeries.FilmDigitizer.Ystep_dbl
97

RawSeries.FirstSampleTime.DateTime_txt
92

RawSeries.FirstSampleTime.Source_txt
93

RawSeries.FirstSampleTime.TimeError_dbl
93

RawSeries.Mean_dbl
106

RawSeries.Peak.Place_dbl
96

RawSeries.Peak.Value_dbl
96

RawSeries.RMS_dbl
99

RawSeries.SampleInterval_dbl
95

RawSeries.SamplesPerSecond_dbl
95

RawSeries.Span_dbl
95

RawSeries.TriggerTime.DateTime_txt
95

RawSeries.TriggerTime.TimeError_dbl
96

RawSeries.UnevenSamplingUnits_txt
95

S
Sensor.ArrayChannel_int
83

Sensor.Azimuth.Value_dbl
82

Sensor.Azimuth.ValueError_dbl
83

Sensor.Comments_txt
86

Sensor.Damping.Value_dbl
86

Sensor.Damping.ValueError_dbl
86

Sensor.DAUchannel_int
84

Sensor.FullScaleIn_dbl
84

Sensor.FullScaleOut_dbl
84

Sensor.HighPass.Corner_dbl
86

Sensor.HighPass.Decay_dbl
86

Sensor.Inclination.Value_dbl
82

Sensor.Inclination.ValueError_dbl
83

Sensor.LowPass.Corner_dbl
86

Sensor.LowPass.Decay_dbl
86

Sensor.Manufacturer_txt
82

Sensor.Model_txt
82

Sensor.NaturalFrequency.Value_dbl
86

Sensor.NaturalFrequency.ValueError_dbl
86

Sensor.Orientation_txt
83

Sensor.RelativeAzimuth.Value_dbl
83

Sensor.RelativeAzimuth.ValueError_dbl
83

Sensor.Sensitivity_dbl
84

Sensor.SensitivityContext_txt
84

Sensor.SerialNumber_txt
82

Sensor.TransferFunction.FilterName_txt
85

Sensor.TransferFunction.PoleZero.Denominator.NumberOfRoots_int
85

Sensor.TransferFunction.PoleZero.Denominator.Root(m)_cpx
85

Sensor.TransferFunction.PoleZero.Numerator.NumberOfRoots_int
85

Sensor.TransferFunction.PoleZero.Numerator.Root(m)_cpx
85

Sensor.TransferFunction.Polynomial.Denominator.Coefficient(m)_dbl
85

Sensor.TransferFunction.Polynomial.Denominator.NumberOfCoeff_int
85

Sensor.TransferFunction.Polynomial.Numerator.Coefficient(m)_dbl
85

Sensor.TransferFunction.Polynomial.Numerator.NumberOfCoeff_int
85

SubClassName
5

SubSubClassName
5

T
TagName
5

ThisFile.CharacterEncoding_txt
27

ThisFile.Comment.Agency_txt
30

ThisFile.Comment.TextValue_txt
30

ThisFile.DataSeriesCOSMOSidentifier_txt
28

ThisFile.Format_txt
27

ThisFile.MetadataValid.Agency_txt
29

ThisFile.MetadataValid.Start.DateTime_txt
29

ThisFile.MetadataValid.Stop.DateTime_txt
29

ThisFile.NullFloatValue_dbl
30

ThisFile.NullIntValue_int
30

ThisFile.Preparation.Agency_txt
28

ThisFile.Preparation.DateTime_txt
28

ThisFile.ValidBand.HighPass.Corner_dbl
30

ThisFile.ValidBand.LowPass.Corner_dbl
30

V
VariableType
5, 115

Table of Contents

1Introductory Material

OVERVIEW:
1
A NOTE ON COMMENT USAGE:
3
FORMAL DEFINITION OF THE COSMOS TAGGED FORMAT
5
Formal syntax:
5
Primary Tag Classes and Definitions of Terms
7
EXAMPLES:
9
ADDITIONAL MATTERS OF FORMAT:
10
REQUIRED AND LESSER VARIABLES:
13
NOTATION:
13
ORGANIZATION OF THIS DOCUMENT:
14
DATE-AND-TIME FORMAT FOR DateTime TAGS:
14
ON PRECISION: THIS IS IMPORTANT!
15
NULL VALUES:
16
QUESTIONS TO THE COSMOS COMMUNITY:
17
THE COSMOS TAGGED FORMAT TABLES, VERSION CTF.1.0
23
Table 1. Variable-Types Suffix List (a new Table)
23
Table 2. Recognized Units (Formerly "Table 2")
24
Table 3. Header Tags.
28
Table 3A. Certain General and Special Tags
28
Table 3B(a). Type of DataSeries (Formerly "Table 1", cf. "Table 2")
32
Table 3B(b). Codes for Types of DataSeries
33
Table 3C(a). Record Types (Formerly "Table 3")
35
Table 3C(b). Record-Type and Input-Type Codes
36
Table 3D. Geographic and Point Information (Formerly "Tables 4, 5, 6"; new SNCL Tables)
38
On Naming:
40
SNCL NAMING DETAILS:
41
Table 3E(a). Array Variables, including Network/Owner/Agency Codes (Formerly Tables 4 and 7)
43
Table 3E(b). COSMOS and FDSN Array/Network Codes
45
Table 3F. Other Point and Array Tags — Position
48
Table 3G. Geodetic Elevation Datums (formerly Table 5)
50
Table 3H(a). Site Type and the Built Environment (formerly Table 6)
51
Table 3H(b). Siting Conditions, Reference and Free Field
61
Table 3H(c). Built Environment Values (CSMIP)
62
Table 3H(d). Siting Conditions, Bridges
64
Table 3H(e). Site Type and Built Environment Values – HAZUS Codes
65
Table 3H(f). Occupancy Classes – HAZUS Codes
67
Table 3I. Event (Earthquake) Information (formerly Table 7 in part)
69
Table 3J(a). Data-Acquisition Unit (DAU; Recorder; Data Logger) Information
76
Table 3J(b). DAU Models and Manufacturers (formerly Table 9)
80
Table 3K(a). Sensor Information
84
Table 3K(b). Sensor Models (modified from Table 10; Use Table 3J(b) for Manufacturers)
90
Table 3K(c). Sensor Direction Codes (formerly Table 11) for use with Sensor.Orientation_txt only — Avoid
92
Table 3L. Data Series (Including Original): Time-Series or Spectrum Information (formerly Tables 8 and 12 in part)
94
Table 3M. Processing Information (formerly Tables 8 and 12 in part)
103
Table 3N. Recorder Timing Method (formerly Table 8)
112
Table 3O. Codes for Filter Types Used in Processing (formerly Table 12)
113
Table 3P. Relational Tags Involving Two Positions (moved from Table 3I)
114
Table 3Q. Private Tags
116
Table 3R. DataSeries Tags Closely Associated with Table 4
117
Table 4. Time Series or Spectrum (that is, the DataSeries per se)
121
Index of Tags
123
Table of Contents
133

